{"title":"(特邀)电催化和光催化界面的原位光谱","authors":"Stephen B. Cronin","doi":"10.1149/ma2023-01462505mtgabs","DOIUrl":null,"url":null,"abstract":"We report various aspects of electrochemistry and photoelectrochemistry using in situ spectroscopy of electrode (metal) and photoelectrode (semiconductor) interfaces in situ under electrochemical working conditions. These spectroscopies include sum frequency generation (SFG), transient reflectance/absorption spectroscopy (TAS/TRS), and surface enhanced Raman spectroscopy (SERS). Using surface enhanced Raman scattering (SERS) spectroscopy, we monitor local electric fields using Stark-shifts of nitrile-functionalized silicon photoelectrodes. 6 Using Graphene-enhanced Raman spectroscopy (GERS)-based Stark-shifts, we measure local electric fields and local charge densities at monolayer graphene electrode surfaces. 1 We also measured the stacking dependence and Resonant interlayer excitation of monolayer WSe 2 /MoSe 2 heterostructures for photocatalytic energy conversion. 2 Using sum frequency generation (SFG) spectroscopy, we measure the voltage dependence of the orientation of D 2 O molecules at a graphene electrode surface, which is related back to the “stiffness of the ensemble”. 3 In particular, we measured the “free OD” feature in the spectra, which corresponds to the topmost water molecule that is rotated up out of the bulk water solution and is, therefore, not hydrogen bonded. Using transient absorption spectroscopy (TAS), we measure the lifetime of hot electrons photoexcited in plasmon resonant nanostructures. 5 Using transient reflectance spectroscopy (TRS), we measure the photoexcited carrier dynamics in a GaP/TiO 2 photoelectrode, as well as the electrostatic field dynamics at this semiconductor-liquid interfaces in situ under various electrochemical potentials. 4 Here, the electrostatic fields at the surface of the semiconductor are measured via Franz−Keldysh oscillations (FKO). These spectra reveal that the nanoscale TiO 2 protection layer enhances the built-in field and charge separation performance of GaP photoelectrodes. Shi, H.T., B.F. Zhao, J. Ma, M.J. Bronson, Z. Cai, J.H. Chen, Y. Wang, M. Cronin, L. Jensen and S.B. Cronin, Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts. ACS Applied Materials & Interfaces, 11 , 36252-36258 (2019). Chen, J., C.S. Bailey, D. Cui, Y. Wang, B. Wang, H. Shi, Z. Cai, E. Pop, C. Zhou and S.B. Cronin, Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe2/MoSe2 Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials, DOI:10.1021/acsanm.9b01898 (2020). Montenegro, A., C. Dutta, M. Mammetkuliev, H.T. Shi, B.Y. Hou, D. Bhattacharyya, B.F. Zhao, S.B. Cronin and A.V. Benderskii, Asymmetric response of interfacial water to applied electric fields. Nature, 594 , 62 (2021). Xu, Z.H., B.Y. Hou, F.Y. Zhao, Z. Cai, H.T. Shi, Y.W. Liu, C.L. Hill, D.G. Musaev, M. Mecklenburg, S.B. Cronin and T.Q. Lian, Nanoscale TiO 2 Protection Layer Enhances the Built-In Field and Charge Separation Performance of GaP Photoelectrodes. Nano Letters, 21 , 8017-8024 (2021). Yu Wang, Yi Wang, Indu Aravind, Zhi Cai, Lang Shen, Boxin Zhang, Bo Wang, Jihan Chen, Bofan Zhao, Haotian Shi, Jahan M. Dawlaty, and Stephen B. Cronin. In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures. Journal of the American Chemical Society. DOI: 10.1021/jacs.1c12069 (2022). Haotian Shi, Ryan T. Pekarek, Ran Chen, Boxin Zhang, Yu Wang, Indu Aravind, Zhi Cai, Lasse Jensen, Nathan R. Neale, and Stephen B. Cronin. Monitoring Local Electric Fields using Stark Shifts on Napthyl Nitrile-Functionalized Silicon Photoelectrodes . The Journal of Physical Chemistry C, 124 , 17000-17005 (2020).","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Invited) In Situ Spectroscopy of Electrocatalytic and Photocatalytic Interfaces\",\"authors\":\"Stephen B. Cronin\",\"doi\":\"10.1149/ma2023-01462505mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report various aspects of electrochemistry and photoelectrochemistry using in situ spectroscopy of electrode (metal) and photoelectrode (semiconductor) interfaces in situ under electrochemical working conditions. These spectroscopies include sum frequency generation (SFG), transient reflectance/absorption spectroscopy (TAS/TRS), and surface enhanced Raman spectroscopy (SERS). Using surface enhanced Raman scattering (SERS) spectroscopy, we monitor local electric fields using Stark-shifts of nitrile-functionalized silicon photoelectrodes. 6 Using Graphene-enhanced Raman spectroscopy (GERS)-based Stark-shifts, we measure local electric fields and local charge densities at monolayer graphene electrode surfaces. 1 We also measured the stacking dependence and Resonant interlayer excitation of monolayer WSe 2 /MoSe 2 heterostructures for photocatalytic energy conversion. 2 Using sum frequency generation (SFG) spectroscopy, we measure the voltage dependence of the orientation of D 2 O molecules at a graphene electrode surface, which is related back to the “stiffness of the ensemble”. 3 In particular, we measured the “free OD” feature in the spectra, which corresponds to the topmost water molecule that is rotated up out of the bulk water solution and is, therefore, not hydrogen bonded. Using transient absorption spectroscopy (TAS), we measure the lifetime of hot electrons photoexcited in plasmon resonant nanostructures. 5 Using transient reflectance spectroscopy (TRS), we measure the photoexcited carrier dynamics in a GaP/TiO 2 photoelectrode, as well as the electrostatic field dynamics at this semiconductor-liquid interfaces in situ under various electrochemical potentials. 4 Here, the electrostatic fields at the surface of the semiconductor are measured via Franz−Keldysh oscillations (FKO). These spectra reveal that the nanoscale TiO 2 protection layer enhances the built-in field and charge separation performance of GaP photoelectrodes. Shi, H.T., B.F. Zhao, J. Ma, M.J. Bronson, Z. Cai, J.H. Chen, Y. Wang, M. Cronin, L. Jensen and S.B. Cronin, Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts. ACS Applied Materials & Interfaces, 11 , 36252-36258 (2019). Chen, J., C.S. Bailey, D. Cui, Y. Wang, B. Wang, H. Shi, Z. Cai, E. Pop, C. Zhou and S.B. Cronin, Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe2/MoSe2 Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials, DOI:10.1021/acsanm.9b01898 (2020). Montenegro, A., C. Dutta, M. Mammetkuliev, H.T. Shi, B.Y. Hou, D. Bhattacharyya, B.F. Zhao, S.B. Cronin and A.V. Benderskii, Asymmetric response of interfacial water to applied electric fields. Nature, 594 , 62 (2021). Xu, Z.H., B.Y. Hou, F.Y. Zhao, Z. Cai, H.T. Shi, Y.W. Liu, C.L. Hill, D.G. Musaev, M. Mecklenburg, S.B. Cronin and T.Q. Lian, Nanoscale TiO 2 Protection Layer Enhances the Built-In Field and Charge Separation Performance of GaP Photoelectrodes. Nano Letters, 21 , 8017-8024 (2021). Yu Wang, Yi Wang, Indu Aravind, Zhi Cai, Lang Shen, Boxin Zhang, Bo Wang, Jihan Chen, Bofan Zhao, Haotian Shi, Jahan M. Dawlaty, and Stephen B. Cronin. In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures. Journal of the American Chemical Society. DOI: 10.1021/jacs.1c12069 (2022). Haotian Shi, Ryan T. Pekarek, Ran Chen, Boxin Zhang, Yu Wang, Indu Aravind, Zhi Cai, Lasse Jensen, Nathan R. Neale, and Stephen B. Cronin. Monitoring Local Electric Fields using Stark Shifts on Napthyl Nitrile-Functionalized Silicon Photoelectrodes . The Journal of Physical Chemistry C, 124 , 17000-17005 (2020).\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-01462505mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01462505mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们在电化学工作条件下使用电极(金属)和光电极(半导体)界面的原位光谱报告电化学和光电化学的各个方面。这些光谱包括和频产生(SFG)、瞬态反射/吸收光谱(TAS/TRS)和表面增强拉曼光谱(SERS)。利用表面增强拉曼散射(SERS)光谱,我们利用硝基功能化硅光电极的斯塔克位移监测局部电场。利用基于石墨烯增强拉曼光谱(GERS)的斯塔克位移,我们测量了单层石墨烯电极表面的局部电场和局部电荷密度。我们还测量了单层WSe 2 /MoSe 2异质结构对光催化能量转换的堆叠依赖性和共振层间激发。利用和频产生(SFG)光谱,我们测量了石墨烯电极表面d2o分子取向的电压依赖性,这与“系综刚度”有关。特别是,我们测量了光谱中的“自由OD”特征,它对应于最上面的水分子,它从散装水溶液中旋转出来,因此没有氢键。利用瞬态吸收光谱(TAS)测量了等离子体共振纳米结构中光激发热电子的寿命。利用瞬态反射光谱(TRS),我们测量了GaP/ tio2光电极中的光激发载流子动力学,以及在不同电化学电位下半导体-液体界面处的静电场动力学。在这里,半导体表面的静电场是通过Franz - Keldysh振荡(FKO)来测量的。这些光谱表明,纳米tio2保护层增强了GaP光电极的内置场和电荷分离性能。施洪涛,赵宝峰,马建军,蔡志强,陈建辉,王勇,M. Cronin, L. Jensen, S.B. Cronin,基于石墨烯增强拉曼光谱(GERS)的电极表面局部电场和局部电荷密度测量。ACS应用材料公司通信学报,11,36252-36258(2019)。C.S.贝利,陈,J·d·崔,y, b . Wang h·史,z Cai, e .流行c .周和S.B.克罗宁,叠加独立和共振层间激发的单层WSe2 / MoSe2异质结构光催化能量转换。ACS应用纳米材料,DOI:10.1021/acsanm。9 b01898(2020)。A. Montenegro, A. C. Dutta, M. Mammetkuliev, Shi h.t t, Hou B.Y., D. Bhattacharyya, B.F. Zhao, S.B. Cronin, A. v . Benderskii,界面水对外加电场的不对称响应。自然,594,62(2021)。徐志辉,侯炳银,赵芳艳,蔡志强,石洪涛,刘永文,刘春林,D.G. Musaev, M. Mecklenburg, S.B. Cronin, Lian T.Q.,纳米tio2保护层对GaP光电极内嵌场和电荷分离性能的影响。纳米快报,21,8017-8024(2021)。王宇,王毅,Indu Aravind,蔡智,沈朗,张伯新,王博,陈继涵,赵伯凡,石浩天,Jahan M. Dawlaty, Stephen B. Cronin。等离子体共振光栅结构中热电子驱动光催化的超快动力学原位研究。美国化学学会杂志。DOI: 10.1021 /江淮。1 c12069(2022)。史浩天,Ryan T. Pekarek,陈然,张伯欣,王宇,Indu Aravind,蔡智,Lasse Jensen, Nathan R. Neale, Stephen B. Cronin。在萘基腈功能化硅光电极上使用Stark位移监测局部电场。物理化学学报,29(4),17000-17005(2020)。
(Invited) In Situ Spectroscopy of Electrocatalytic and Photocatalytic Interfaces
We report various aspects of electrochemistry and photoelectrochemistry using in situ spectroscopy of electrode (metal) and photoelectrode (semiconductor) interfaces in situ under electrochemical working conditions. These spectroscopies include sum frequency generation (SFG), transient reflectance/absorption spectroscopy (TAS/TRS), and surface enhanced Raman spectroscopy (SERS). Using surface enhanced Raman scattering (SERS) spectroscopy, we monitor local electric fields using Stark-shifts of nitrile-functionalized silicon photoelectrodes. 6 Using Graphene-enhanced Raman spectroscopy (GERS)-based Stark-shifts, we measure local electric fields and local charge densities at monolayer graphene electrode surfaces. 1 We also measured the stacking dependence and Resonant interlayer excitation of monolayer WSe 2 /MoSe 2 heterostructures for photocatalytic energy conversion. 2 Using sum frequency generation (SFG) spectroscopy, we measure the voltage dependence of the orientation of D 2 O molecules at a graphene electrode surface, which is related back to the “stiffness of the ensemble”. 3 In particular, we measured the “free OD” feature in the spectra, which corresponds to the topmost water molecule that is rotated up out of the bulk water solution and is, therefore, not hydrogen bonded. Using transient absorption spectroscopy (TAS), we measure the lifetime of hot electrons photoexcited in plasmon resonant nanostructures. 5 Using transient reflectance spectroscopy (TRS), we measure the photoexcited carrier dynamics in a GaP/TiO 2 photoelectrode, as well as the electrostatic field dynamics at this semiconductor-liquid interfaces in situ under various electrochemical potentials. 4 Here, the electrostatic fields at the surface of the semiconductor are measured via Franz−Keldysh oscillations (FKO). These spectra reveal that the nanoscale TiO 2 protection layer enhances the built-in field and charge separation performance of GaP photoelectrodes. Shi, H.T., B.F. Zhao, J. Ma, M.J. Bronson, Z. Cai, J.H. Chen, Y. Wang, M. Cronin, L. Jensen and S.B. Cronin, Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts. ACS Applied Materials & Interfaces, 11 , 36252-36258 (2019). Chen, J., C.S. Bailey, D. Cui, Y. Wang, B. Wang, H. Shi, Z. Cai, E. Pop, C. Zhou and S.B. Cronin, Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe2/MoSe2 Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials, DOI:10.1021/acsanm.9b01898 (2020). Montenegro, A., C. Dutta, M. Mammetkuliev, H.T. Shi, B.Y. Hou, D. Bhattacharyya, B.F. Zhao, S.B. Cronin and A.V. Benderskii, Asymmetric response of interfacial water to applied electric fields. Nature, 594 , 62 (2021). Xu, Z.H., B.Y. Hou, F.Y. Zhao, Z. Cai, H.T. Shi, Y.W. Liu, C.L. Hill, D.G. Musaev, M. Mecklenburg, S.B. Cronin and T.Q. Lian, Nanoscale TiO 2 Protection Layer Enhances the Built-In Field and Charge Separation Performance of GaP Photoelectrodes. Nano Letters, 21 , 8017-8024 (2021). Yu Wang, Yi Wang, Indu Aravind, Zhi Cai, Lang Shen, Boxin Zhang, Bo Wang, Jihan Chen, Bofan Zhao, Haotian Shi, Jahan M. Dawlaty, and Stephen B. Cronin. In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures. Journal of the American Chemical Society. DOI: 10.1021/jacs.1c12069 (2022). Haotian Shi, Ryan T. Pekarek, Ran Chen, Boxin Zhang, Yu Wang, Indu Aravind, Zhi Cai, Lasse Jensen, Nathan R. Neale, and Stephen B. Cronin. Monitoring Local Electric Fields using Stark Shifts on Napthyl Nitrile-Functionalized Silicon Photoelectrodes . The Journal of Physical Chemistry C, 124 , 17000-17005 (2020).