钙钛矿基材料作为固体氧化物电解电池(soec)的替代燃料电极

Franziska Elisabeth Winterhalder, Yousef Alizad Farzin, Olivier Guillon, Andre Weber, Norbert H. Menzler
{"title":"钙钛矿基材料作为固体氧化物电解电池(soec)的替代燃料电极","authors":"Franziska Elisabeth Winterhalder, Yousef Alizad Farzin, Olivier Guillon, Andre Weber, Norbert H. Menzler","doi":"10.1149/ma2023-0154169mtgabs","DOIUrl":null,"url":null,"abstract":"Enhancing the lifetime of SOECs is a challenge to overcome regarding their commercialization. A major impact on the lifetime of a cell during electrolysis operation, particularly under thermoneutral potential and high current densities, is the degradation of the currently used electrode materials, mainly the Ni-based fuel electrode. Among other things, nickel migration, as well as agglomeration, is leading to a significant performance loss after a certain operating time. Hence, preventing degradation mechanisms of the fuel electrode during operation is a necessity to be tackled for using it commercially. Therefore the development of alternative materials which combine sufficient performance with the lowest possible degradation rate is needed. Perovskite-based materials have been investigated in the last years as all-ceramic possible substitutes. In this work, four perovskites (i.e., strontium-iron-niobate double perovskite (SFN), a strontium-iron-titanate material (STF), a lanthanum-strontium-titanate (LST) and a lanthanum-strontium-iron-manganese (LSFM)) were examined as alternative electrode materials. The aim is to substitute the active fuel electrode, at the moment commonly consisting of Ni cermets, with a perovskite-based electrode while at the same time using state-of-the-art materials for the remaining cell components. The first task here was to look at the chemical stability between the new electrode material and the electrolyte under the standard conditions used to manufacture fuel electrode-supported SOECs. Therefore, the compatibility between these perovskites with a yttria-stabilized-zirconia (8YSZ) electrolyte and how nickel inside the fuel electrode affected the chemical stability during sintering in air at 1400 °C for 5 h was investigated. At this point, SFN double perovskite shows the lowest interaction between the electrode and electrolyte after thermal treatment. A thorough evaluation of all preliminary tests (including compatibility, stability in reducing atmospheres and redox stability tests) indicates that SFN shows so far the best results of the four materials in terms of application as fuel electrode material, followed directly by STF. Thus SFN and STF were chosen to be evaluated in single cell tests. The tests of pure SFN and STF electrodes are carried out with electrolyte-supported single cells exhibiting an LSCF air electrode and symmetrical cells, respectively. CV-characteristics and impedance spectra are measured at varied operating conditions. Impedance spectra are evaluated by the distribution of relaxation times (DRT). These examinations are carried out to give an insight into the electrochemical properties of pure perovskite-based fuel electrodes in order to obtain a base for further optimization.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perovskite-Based Materials As Alternative Fuel Electrodes for Solid Oxide Electrolysis Cells (SOECs)\",\"authors\":\"Franziska Elisabeth Winterhalder, Yousef Alizad Farzin, Olivier Guillon, Andre Weber, Norbert H. Menzler\",\"doi\":\"10.1149/ma2023-0154169mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancing the lifetime of SOECs is a challenge to overcome regarding their commercialization. A major impact on the lifetime of a cell during electrolysis operation, particularly under thermoneutral potential and high current densities, is the degradation of the currently used electrode materials, mainly the Ni-based fuel electrode. Among other things, nickel migration, as well as agglomeration, is leading to a significant performance loss after a certain operating time. Hence, preventing degradation mechanisms of the fuel electrode during operation is a necessity to be tackled for using it commercially. Therefore the development of alternative materials which combine sufficient performance with the lowest possible degradation rate is needed. Perovskite-based materials have been investigated in the last years as all-ceramic possible substitutes. In this work, four perovskites (i.e., strontium-iron-niobate double perovskite (SFN), a strontium-iron-titanate material (STF), a lanthanum-strontium-titanate (LST) and a lanthanum-strontium-iron-manganese (LSFM)) were examined as alternative electrode materials. The aim is to substitute the active fuel electrode, at the moment commonly consisting of Ni cermets, with a perovskite-based electrode while at the same time using state-of-the-art materials for the remaining cell components. The first task here was to look at the chemical stability between the new electrode material and the electrolyte under the standard conditions used to manufacture fuel electrode-supported SOECs. Therefore, the compatibility between these perovskites with a yttria-stabilized-zirconia (8YSZ) electrolyte and how nickel inside the fuel electrode affected the chemical stability during sintering in air at 1400 °C for 5 h was investigated. At this point, SFN double perovskite shows the lowest interaction between the electrode and electrolyte after thermal treatment. A thorough evaluation of all preliminary tests (including compatibility, stability in reducing atmospheres and redox stability tests) indicates that SFN shows so far the best results of the four materials in terms of application as fuel electrode material, followed directly by STF. Thus SFN and STF were chosen to be evaluated in single cell tests. The tests of pure SFN and STF electrodes are carried out with electrolyte-supported single cells exhibiting an LSCF air electrode and symmetrical cells, respectively. CV-characteristics and impedance spectra are measured at varied operating conditions. Impedance spectra are evaluated by the distribution of relaxation times (DRT). These examinations are carried out to give an insight into the electrochemical properties of pure perovskite-based fuel electrodes in order to obtain a base for further optimization.\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-0154169mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-0154169mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高soec的使用寿命是其商业化需要克服的一个挑战。电解过程中,特别是在热中性电位和高电流密度下,对电池寿命的主要影响是目前使用的电极材料(主要是镍基燃料电极)的降解。除其他外,镍的迁移和团聚在一定的运行时间后会导致显著的性能损失。因此,防止燃料电极在运行过程中的降解机制是其商业化应用必须解决的问题。因此,需要开发将足够的性能与尽可能低的降解率结合起来的替代材料。在过去的几年里,钙钛矿基材料被研究作为全陶瓷的可能替代品。在这项工作中,研究了四种钙钛矿(即锶-铁-铌酸盐双钙钛矿(SFN),锶-铁-钛酸盐材料(STF),镧-钛酸锶(LST)和镧-锶-铁-锰(LSFM))作为替代电极材料。其目的是用钙钛矿基电极替代目前通常由镍金属陶瓷组成的活性燃料电极,同时使用最先进的材料来制造剩余的电池组件。这里的第一个任务是在用于制造燃料电极支持的soec的标准条件下,观察新电极材料和电解质之间的化学稳定性。因此,研究了这些钙钛矿与钇稳定氧化锆(8YSZ)电解质之间的相容性,以及燃料电极内的镍如何影响燃料电极在1400℃空气中烧结5小时的化学稳定性。此时,SFN双钙钛矿在热处理后电极与电解质之间的相互作用最低。对所有初步测试(包括相容性、还原性气氛稳定性和氧化还原稳定性测试)的全面评估表明,到目前为止,四种材料在用作燃料电极材料方面的效果最好的是SFN,其次是STF。因此选择SFN和STF在单细胞试验中进行评估。对纯SFN和STF电极进行了测试,分别采用电解质支持的单个电池,具有LSCF空气电极和对称电池。在不同的工作条件下测量了cv特性和阻抗谱。阻抗谱由松弛时间(DRT)的分布来计算。这些测试的进行是为了深入了解纯钙钛矿基燃料电极的电化学性能,以便为进一步优化奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perovskite-Based Materials As Alternative Fuel Electrodes for Solid Oxide Electrolysis Cells (SOECs)
Enhancing the lifetime of SOECs is a challenge to overcome regarding their commercialization. A major impact on the lifetime of a cell during electrolysis operation, particularly under thermoneutral potential and high current densities, is the degradation of the currently used electrode materials, mainly the Ni-based fuel electrode. Among other things, nickel migration, as well as agglomeration, is leading to a significant performance loss after a certain operating time. Hence, preventing degradation mechanisms of the fuel electrode during operation is a necessity to be tackled for using it commercially. Therefore the development of alternative materials which combine sufficient performance with the lowest possible degradation rate is needed. Perovskite-based materials have been investigated in the last years as all-ceramic possible substitutes. In this work, four perovskites (i.e., strontium-iron-niobate double perovskite (SFN), a strontium-iron-titanate material (STF), a lanthanum-strontium-titanate (LST) and a lanthanum-strontium-iron-manganese (LSFM)) were examined as alternative electrode materials. The aim is to substitute the active fuel electrode, at the moment commonly consisting of Ni cermets, with a perovskite-based electrode while at the same time using state-of-the-art materials for the remaining cell components. The first task here was to look at the chemical stability between the new electrode material and the electrolyte under the standard conditions used to manufacture fuel electrode-supported SOECs. Therefore, the compatibility between these perovskites with a yttria-stabilized-zirconia (8YSZ) electrolyte and how nickel inside the fuel electrode affected the chemical stability during sintering in air at 1400 °C for 5 h was investigated. At this point, SFN double perovskite shows the lowest interaction between the electrode and electrolyte after thermal treatment. A thorough evaluation of all preliminary tests (including compatibility, stability in reducing atmospheres and redox stability tests) indicates that SFN shows so far the best results of the four materials in terms of application as fuel electrode material, followed directly by STF. Thus SFN and STF were chosen to be evaluated in single cell tests. The tests of pure SFN and STF electrodes are carried out with electrolyte-supported single cells exhibiting an LSCF air electrode and symmetrical cells, respectively. CV-characteristics and impedance spectra are measured at varied operating conditions. Impedance spectra are evaluated by the distribution of relaxation times (DRT). These examinations are carried out to give an insight into the electrochemical properties of pure perovskite-based fuel electrodes in order to obtain a base for further optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redox Tolerant Solid Oxide Electrolysis Cathode for CO2 and Steam (Keynote) Releasing the Bubbles: Efficient Phase Separation in (Photo-)Electrochemical Devices in Microgravity Environment Phase Stability of SrTi1-XFexO3- δ Under Solid Oxide Cell Fuel-Electrode Conditions: Implications for Related Exsolution Electrode Materials Long-Term Stability of Perovskite-Based Fuel Electrode Material Sr2Fe2-XMoxO6-δ – GDC for Enhanced High-Temperature Steam and CO2 Electrolysis GC:BiFE As an Useful Tool for the Quantification of Health Harmful Organic Compounds in Artisanal Spiritus Beverages Via ADSV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1