使用透射/反射线方法对材料进行电磁特性表征的加材制造矩形波导

IF 3.4 4区 工程技术 Q1 ENGINEERING, MECHANICAL Rapid Prototyping Journal Pub Date : 2023-11-10 DOI:10.1108/rpj-06-2023-0197
Connor Shane Smith, Alanna Julius, Christian Arbeeny, John Davenport Stevens
{"title":"使用透射/反射线方法对材料进行电磁特性表征的加材制造矩形波导","authors":"Connor Shane Smith, Alanna Julius, Christian Arbeeny, John Davenport Stevens","doi":"10.1108/rpj-06-2023-0197","DOIUrl":null,"url":null,"abstract":"Purpose Radio frequency (RF) technology relies on the electromagnetic properties of the materials used, which includes their complex permittivities and loss tangents. To measure these properties, techniques for material characterization such as the transmission/reflection method are used in conjunction with conversion techniques to calculate these values from scattering parameters. Unfortunately, these techniques rely on relatively expensive rectangular waveguide adaptors and components, especially if testing over large frequency ranges. This paper aims to overcome this challenge by developing a more affordable test equipment solution based on additively manufactured waveguide sections. Design/methodology/approach To evaluate the effectiveness of using additively manufactured waveguides to perform electromagnetic characterization with the transmission/reflection method, samples of PLA Tough with varying infill percentages and samples made from several Formlabs photopolymer resins are fabricated and analyzed. Findings Results show that the method yielded permittivity and loss tangent values for the measured materials that generally agree with those found in the literature, supporting its credibility. Originality/value The accessibility of this measurement technique will ideally allow for more electromagnetic material characterization to occur and expand the possible use of additive manufacturing in future RF designs. This work also provides characterization of several Formlabs photopolymer resins, which have not been widely analyzed in the current literature.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"56 7","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additively manufactured rectangular waveguides for the electromagnetic characterization of materials using the transmission/reflection line method\",\"authors\":\"Connor Shane Smith, Alanna Julius, Christian Arbeeny, John Davenport Stevens\",\"doi\":\"10.1108/rpj-06-2023-0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Radio frequency (RF) technology relies on the electromagnetic properties of the materials used, which includes their complex permittivities and loss tangents. To measure these properties, techniques for material characterization such as the transmission/reflection method are used in conjunction with conversion techniques to calculate these values from scattering parameters. Unfortunately, these techniques rely on relatively expensive rectangular waveguide adaptors and components, especially if testing over large frequency ranges. This paper aims to overcome this challenge by developing a more affordable test equipment solution based on additively manufactured waveguide sections. Design/methodology/approach To evaluate the effectiveness of using additively manufactured waveguides to perform electromagnetic characterization with the transmission/reflection method, samples of PLA Tough with varying infill percentages and samples made from several Formlabs photopolymer resins are fabricated and analyzed. Findings Results show that the method yielded permittivity and loss tangent values for the measured materials that generally agree with those found in the literature, supporting its credibility. Originality/value The accessibility of this measurement technique will ideally allow for more electromagnetic material characterization to occur and expand the possible use of additive manufacturing in future RF designs. This work also provides characterization of several Formlabs photopolymer resins, which have not been widely analyzed in the current literature.\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\"56 7\",\"pages\":\"0\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-06-2023-0197\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rpj-06-2023-0197","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

射频(RF)技术依赖于所用材料的电磁特性,包括其复杂的介电常数和损耗切线。为了测量这些特性,材料表征技术(如透射/反射法)与转换技术结合使用,从散射参数计算这些值。不幸的是,这些技术依赖于相对昂贵的矩形波导适配器和组件,特别是在大频率范围内进行测试时。本文旨在通过开发一种基于增材制造波导截面的更经济实惠的测试设备解决方案来克服这一挑战。为了评估使用增材制造波导进行透射/反射法电磁表征的有效性,制作并分析了不同填充百分比的PLA Tough样品和几种Formlabs光聚合物树脂制成的样品。结果表明,该方法得到的测量材料的介电常数和损耗正切值与文献中发现的值基本一致,支持其可信度。这种测量技术的可访问性将理想地允许更多的电磁材料特性发生,并扩大增材制造在未来RF设计中的可能使用。这项工作还提供了几种Formlabs光聚合物树脂的表征,这些树脂在当前文献中尚未得到广泛分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additively manufactured rectangular waveguides for the electromagnetic characterization of materials using the transmission/reflection line method
Purpose Radio frequency (RF) technology relies on the electromagnetic properties of the materials used, which includes their complex permittivities and loss tangents. To measure these properties, techniques for material characterization such as the transmission/reflection method are used in conjunction with conversion techniques to calculate these values from scattering parameters. Unfortunately, these techniques rely on relatively expensive rectangular waveguide adaptors and components, especially if testing over large frequency ranges. This paper aims to overcome this challenge by developing a more affordable test equipment solution based on additively manufactured waveguide sections. Design/methodology/approach To evaluate the effectiveness of using additively manufactured waveguides to perform electromagnetic characterization with the transmission/reflection method, samples of PLA Tough with varying infill percentages and samples made from several Formlabs photopolymer resins are fabricated and analyzed. Findings Results show that the method yielded permittivity and loss tangent values for the measured materials that generally agree with those found in the literature, supporting its credibility. Originality/value The accessibility of this measurement technique will ideally allow for more electromagnetic material characterization to occur and expand the possible use of additive manufacturing in future RF designs. This work also provides characterization of several Formlabs photopolymer resins, which have not been widely analyzed in the current literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rapid Prototyping Journal
Rapid Prototyping Journal 工程技术-材料科学:综合
CiteScore
8.30
自引率
10.30%
发文量
137
审稿时长
4.6 months
期刊介绍: Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area. -Benchmarking – certification and qualification in AM- Mass customisation in AM- Design for AM- Materials aspects- Reviews of processes/applications- CAD and other software aspects- Enhancement of existing processes- Integration with design process- Management implications- New AM processes- Novel applications of AM parts- AM for tooling- Medical applications- Reverse engineering in relation to AM- Additive & Subtractive hybrid manufacturing- Industrialisation
期刊最新文献
Correlation between the part quality, strength and surface roughness of material extrusion process An investigation into the mechanisms that influence laser sintered polyamide-12 top surfaces Experimental and numerical study of in-plane uniaxial compression response of PU foam filled aluminum arrowhead auxetic honeycomb Manufacture of thermoplastic molds by fused filament fabrication 3D printing for rapid prototyping of polyurethane foam molded products A layerwise geometric error compensation procedure for additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1