牛顿加热下MHD两相Williamson流体的热辐射

Q4 Multidisciplinary ASM Science Journal Pub Date : 2023-11-10 DOI:10.32802/asmscj.2023.1155
Abdul Rahman Mohd Kasim, NUR SYAMILAH ARIFIN, Sharidan Shafie, Noor Amalina Nisa Ariffin
{"title":"牛顿加热下MHD两相Williamson流体的热辐射","authors":"Abdul Rahman Mohd Kasim, NUR SYAMILAH ARIFIN, Sharidan Shafie, Noor Amalina Nisa Ariffin","doi":"10.32802/asmscj.2023.1155","DOIUrl":null,"url":null,"abstract":"Due to the unique qualities in its behaviours that study the solid and fluid aspects, a study on two-phase flow (solid and liquid) is deemed to be supplementary trustworthy in describing the application of liquid in industrial sectors. Over the past few decades, several non-Newtonian fluid models have been found, but the Williamson model stands out as the most intriguing. The Williamson flow model will be more fascinating to study when the existing particles are considered. Therefore, the purpose of this article is to investigate Williamson fluid with dust particles under the existing MHD and heat radiation. To make inquiry more intriguing, the analysed model also included a Newtonian heating (NH) condition. After employing similarity transformation, the resultant equations, as in Ordinary Differential Equations (ODEs), are solved using the Runge-Kutta Fehlberg (RKF45) method. The findings showed that the presence of fluid-particle interaction (FPI) influenced the fluid velocity, subsequent in a declining the fluid movement and an increase in particle motion.","PeriodicalId":38804,"journal":{"name":"ASM Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally Radiation of MHD Two-Phase Williamson Fluid with Newtonian Heating (NH)\",\"authors\":\"Abdul Rahman Mohd Kasim, NUR SYAMILAH ARIFIN, Sharidan Shafie, Noor Amalina Nisa Ariffin\",\"doi\":\"10.32802/asmscj.2023.1155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the unique qualities in its behaviours that study the solid and fluid aspects, a study on two-phase flow (solid and liquid) is deemed to be supplementary trustworthy in describing the application of liquid in industrial sectors. Over the past few decades, several non-Newtonian fluid models have been found, but the Williamson model stands out as the most intriguing. The Williamson flow model will be more fascinating to study when the existing particles are considered. Therefore, the purpose of this article is to investigate Williamson fluid with dust particles under the existing MHD and heat radiation. To make inquiry more intriguing, the analysed model also included a Newtonian heating (NH) condition. After employing similarity transformation, the resultant equations, as in Ordinary Differential Equations (ODEs), are solved using the Runge-Kutta Fehlberg (RKF45) method. The findings showed that the presence of fluid-particle interaction (FPI) influenced the fluid velocity, subsequent in a declining the fluid movement and an increase in particle motion.\",\"PeriodicalId\":38804,\"journal\":{\"name\":\"ASM Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32802/asmscj.2023.1155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32802/asmscj.2023.1155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

由于其研究固液两相流的独特特性,对固液两相流的研究被认为是描述液体在工业领域应用的补充可信的研究。在过去的几十年里,人们发现了几个非牛顿流体模型,但威廉姆森模型最为引人注目。当考虑到现有的粒子时,Williamson流动模型的研究将更有吸引力。因此,本文的目的是在现有的MHD和热辐射下研究含尘颗粒的Williamson流体。为了使调查更有趣,分析的模型还包括牛顿加热(NH)条件。采用相似变换后,所得方程与常微分方程(ode)一样,采用Runge-Kutta Fehlberg (RKF45)方法求解。结果表明,流体-颗粒相互作用(FPI)的存在影响流体速度,随后流体运动下降,颗粒运动增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermally Radiation of MHD Two-Phase Williamson Fluid with Newtonian Heating (NH)
Due to the unique qualities in its behaviours that study the solid and fluid aspects, a study on two-phase flow (solid and liquid) is deemed to be supplementary trustworthy in describing the application of liquid in industrial sectors. Over the past few decades, several non-Newtonian fluid models have been found, but the Williamson model stands out as the most intriguing. The Williamson flow model will be more fascinating to study when the existing particles are considered. Therefore, the purpose of this article is to investigate Williamson fluid with dust particles under the existing MHD and heat radiation. To make inquiry more intriguing, the analysed model also included a Newtonian heating (NH) condition. After employing similarity transformation, the resultant equations, as in Ordinary Differential Equations (ODEs), are solved using the Runge-Kutta Fehlberg (RKF45) method. The findings showed that the presence of fluid-particle interaction (FPI) influenced the fluid velocity, subsequent in a declining the fluid movement and an increase in particle motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASM Science Journal
ASM Science Journal Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
23
期刊介绍: The ASM Science Journal publishes advancements in the broad fields of medical, engineering, earth, mathematical, physical, chemical and agricultural sciences as well as ICT. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientists who subscribe to the fields listed above will be the source of papers to the journal. All articles will be reviewed by at least two experts in that particular field.
期刊最新文献
Ergonomics Risk Assessment Methods to Minimise Musculoskeletal Disorders: Barecore Workers in Indonesia Hyaluronidase Involvement in Streptococcus pneumoniae Biofilm Activity Analysing the Determinants of Job Selection Preferences among Quantitative Science Students in Malaysia using Multi-Criteria Decision Making (MCDM) Effect of Column Deformation for Steel Frames with Semi-rigid Connection Comparison of Thermoplastic Filaments for 3D Printing in The Development of Ventilator During Ventilator Shortage Situation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1