{"title":"弯曲结构上偶极晶格的几何诱导畴壁","authors":"Ansgar Siemens, Peter Schmelcher","doi":"10.1088/1751-8121/ad0bcb","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the ground state properties of rectangular dipole lattices on curved surfaces. The curved geometry can `distort' the lattice and lead to dipole equilibrium configurations that strongly depend on the local geometry of the surface. We find that the system's ground state can exhibit domain-walls separating domains with different dipole configurations. Furthermore, we show how, regardless of the surface geometry, the domain-walls locate along the lattice sites for which the (Euclidean) distances to nearest and next-nearest neighbors are equal. We analyze the response of the domain-walls to an external electric field and observe displacements and splittings thereof below and above a critical electric field, respectively. We further show that the domain-wall acts as a boundary that traps low-energy excitations within a domain.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"82 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometry induced domain-walls of dipole lattices on curved structures\",\"authors\":\"Ansgar Siemens, Peter Schmelcher\",\"doi\":\"10.1088/1751-8121/ad0bcb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the ground state properties of rectangular dipole lattices on curved surfaces. The curved geometry can `distort' the lattice and lead to dipole equilibrium configurations that strongly depend on the local geometry of the surface. We find that the system's ground state can exhibit domain-walls separating domains with different dipole configurations. Furthermore, we show how, regardless of the surface geometry, the domain-walls locate along the lattice sites for which the (Euclidean) distances to nearest and next-nearest neighbors are equal. We analyze the response of the domain-walls to an external electric field and observe displacements and splittings thereof below and above a critical electric field, respectively. We further show that the domain-wall acts as a boundary that traps low-energy excitations within a domain.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"82 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad0bcb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0bcb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometry induced domain-walls of dipole lattices on curved structures
Abstract We investigate the ground state properties of rectangular dipole lattices on curved surfaces. The curved geometry can `distort' the lattice and lead to dipole equilibrium configurations that strongly depend on the local geometry of the surface. We find that the system's ground state can exhibit domain-walls separating domains with different dipole configurations. Furthermore, we show how, regardless of the surface geometry, the domain-walls locate along the lattice sites for which the (Euclidean) distances to nearest and next-nearest neighbors are equal. We analyze the response of the domain-walls to an external electric field and observe displacements and splittings thereof below and above a critical electric field, respectively. We further show that the domain-wall acts as a boundary that traps low-energy excitations within a domain.