C. J. Van Lissa, M. Garnier-Villarreal, D. Anadria
{"title":"使用开源r包tidySEM进行潜在类分析的推荐实践","authors":"C. J. Van Lissa, M. Garnier-Villarreal, D. Anadria","doi":"10.1080/10705511.2023.2250920","DOIUrl":null,"url":null,"abstract":"Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there is a lack of user-friendly open-source implementations. Based on contemporary academic discourse, this paper introduces recommendations for LCA which are summarized in the SMART-LCA checklist: Standards for More Accuracy in Reporting of different Types of Latent Class Analysis. The free open-source R-package package tidySEM implements the practices recommended here. It is easy for beginners to adopt thanks to user-friendly wrapper functions, and yet remains relevant for expert users as its models are integrated within the OpenMx structural equation modeling framework and remain fully customizable. The Appendices and tidySEM package vignettes include tutorial examples of common applications of LCA.","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"47 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommended Practices in Latent Class Analysis Using the Open-Source R-Package tidySEM\",\"authors\":\"C. J. Van Lissa, M. Garnier-Villarreal, D. Anadria\",\"doi\":\"10.1080/10705511.2023.2250920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there is a lack of user-friendly open-source implementations. Based on contemporary academic discourse, this paper introduces recommendations for LCA which are summarized in the SMART-LCA checklist: Standards for More Accuracy in Reporting of different Types of Latent Class Analysis. The free open-source R-package package tidySEM implements the practices recommended here. It is easy for beginners to adopt thanks to user-friendly wrapper functions, and yet remains relevant for expert users as its models are integrated within the OpenMx structural equation modeling framework and remain fully customizable. The Appendices and tidySEM package vignettes include tutorial examples of common applications of LCA.\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2023.2250920\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2250920","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Recommended Practices in Latent Class Analysis Using the Open-Source R-Package tidySEM
Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there is a lack of user-friendly open-source implementations. Based on contemporary academic discourse, this paper introduces recommendations for LCA which are summarized in the SMART-LCA checklist: Standards for More Accuracy in Reporting of different Types of Latent Class Analysis. The free open-source R-package package tidySEM implements the practices recommended here. It is easy for beginners to adopt thanks to user-friendly wrapper functions, and yet remains relevant for expert users as its models are integrated within the OpenMx structural equation modeling framework and remain fully customizable. The Appendices and tidySEM package vignettes include tutorial examples of common applications of LCA.
期刊介绍:
Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.