通过机器学习管理社交媒体上的假新闻——一项综合分析

{"title":"通过机器学习管理社交媒体上的假新闻——一项综合分析","authors":"","doi":"10.33140/jsndc.03.01.12","DOIUrl":null,"url":null,"abstract":"The pervasive presence of fake news on social media platforms poses a significant threat to the credibility of information, the functioning of democracies, and the stability of societies. This paper presents a comprehensive analysis of the application of machine learning techniques in managing fake news on social media. We discuss the challenges and opportunities in employing machine learning for fake news detection and mitigation, review the state-of-the-art methods, and suggest future research directions. We also highlight ethical considerations and the importance of maintaining user privacy while combating fake news.","PeriodicalId":91517,"journal":{"name":"International journal of sensor networks and data communications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Managing Fake News on Social Media Through Machine Learning - A Comprehensive Analysis\",\"authors\":\"\",\"doi\":\"10.33140/jsndc.03.01.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pervasive presence of fake news on social media platforms poses a significant threat to the credibility of information, the functioning of democracies, and the stability of societies. This paper presents a comprehensive analysis of the application of machine learning techniques in managing fake news on social media. We discuss the challenges and opportunities in employing machine learning for fake news detection and mitigation, review the state-of-the-art methods, and suggest future research directions. We also highlight ethical considerations and the importance of maintaining user privacy while combating fake news.\",\"PeriodicalId\":91517,\"journal\":{\"name\":\"International journal of sensor networks and data communications\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sensor networks and data communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jsndc.03.01.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sensor networks and data communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jsndc.03.01.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体平台上普遍存在的假新闻对信息的可信度、民主制度的运作和社会的稳定构成了重大威胁。本文全面分析了机器学习技术在管理社交媒体上的假新闻中的应用。我们讨论了利用机器学习进行假新闻检测和缓解的挑战和机遇,回顾了最先进的方法,并提出了未来的研究方向。我们还强调道德方面的考虑,以及在打击假新闻的同时维护用户隐私的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Managing Fake News on Social Media Through Machine Learning - A Comprehensive Analysis
The pervasive presence of fake news on social media platforms poses a significant threat to the credibility of information, the functioning of democracies, and the stability of societies. This paper presents a comprehensive analysis of the application of machine learning techniques in managing fake news on social media. We discuss the challenges and opportunities in employing machine learning for fake news detection and mitigation, review the state-of-the-art methods, and suggest future research directions. We also highlight ethical considerations and the importance of maintaining user privacy while combating fake news.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Program Operators SIT, tS, S1 e, Set1 Towards Ultraviolet Microbeam Scanning and Lens-Less UV Microbeam Microscopy with Mirror Galvanometric Scanners: From the History of Research Instrumentation to Engineering of Modern Mechatronic Optical Systems Smart Surveillance: A Review & Survey Through Deep Learning Techniques for Detection & Analysis Deep Surveillance System Federated Learning for Collaborative Network Security in Decentralized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1