A Aziz Sait, Glenn W. Jones, Nikhil Rastogi, Rebecca Mathew, Sunil Mani, Jason Berilgen
{"title":"与常规物理优化相比,gEUD优化在立体定向治疗计划中的潜在优势","authors":"A Aziz Sait, Glenn W. Jones, Nikhil Rastogi, Rebecca Mathew, Sunil Mani, Jason Berilgen","doi":"10.1017/s1460396923000389","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: A small number of studies have confirmed the advantage of generalised equivalent uniform dose (gEUD) optimisation for some standard clinical scenarios; however, its performance with complicated stereotactic treatments is yet to be explored. Therefore, this study compared two planning optimisation methods, gEUD and Physical dose, in stereotactic treatments for several complex anatomical locations. Methods: Thirty patients were selected, ten each for sites of brain, lung and spine. Two stereotactic plans were generated for each case using the gEUD objective and Physical objective cost functions. Within each of the three sites, dosimetric indices for conformity, gradient and homogeneity, along with parameters of monitor units and dose–volume histograms (DVHs), were compared for statistical significance. Additionally, patient-specific quality assurance was conducted using portal dosimetry, and the gamma passing rate between the two plans was evaluated. Results: Optimisation was better with a gEUD objective as compared with Physical objective, notably sparing critical organs. Overall, the differences in mean values for six critical organs at risk favoured gEUD-based over Physical-based plans (all six 2-tailed p -values were < 0·0002). Furthermore, all differences in mean values for DVH parameters favoured gEUD-based plans: GTVmean, GTVmax, PTVD100V, homogeneity index, gradient index and monitor unit (treatment time) (each 2-tailed p < 0·05). Conclusions: gEUD optimisation in stereotactic treatment plans has a clear and general statistical advantage over Physical dose optimisation.","PeriodicalId":44597,"journal":{"name":"Journal of Radiotherapy in Practice","volume":"24 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential advantages of gEUD optimisation as compared with conventional physical optimisation for stereotactic treatment planning\",\"authors\":\"A Aziz Sait, Glenn W. Jones, Nikhil Rastogi, Rebecca Mathew, Sunil Mani, Jason Berilgen\",\"doi\":\"10.1017/s1460396923000389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: A small number of studies have confirmed the advantage of generalised equivalent uniform dose (gEUD) optimisation for some standard clinical scenarios; however, its performance with complicated stereotactic treatments is yet to be explored. Therefore, this study compared two planning optimisation methods, gEUD and Physical dose, in stereotactic treatments for several complex anatomical locations. Methods: Thirty patients were selected, ten each for sites of brain, lung and spine. Two stereotactic plans were generated for each case using the gEUD objective and Physical objective cost functions. Within each of the three sites, dosimetric indices for conformity, gradient and homogeneity, along with parameters of monitor units and dose–volume histograms (DVHs), were compared for statistical significance. Additionally, patient-specific quality assurance was conducted using portal dosimetry, and the gamma passing rate between the two plans was evaluated. Results: Optimisation was better with a gEUD objective as compared with Physical objective, notably sparing critical organs. Overall, the differences in mean values for six critical organs at risk favoured gEUD-based over Physical-based plans (all six 2-tailed p -values were < 0·0002). Furthermore, all differences in mean values for DVH parameters favoured gEUD-based plans: GTVmean, GTVmax, PTVD100V, homogeneity index, gradient index and monitor unit (treatment time) (each 2-tailed p < 0·05). Conclusions: gEUD optimisation in stereotactic treatment plans has a clear and general statistical advantage over Physical dose optimisation.\",\"PeriodicalId\":44597,\"journal\":{\"name\":\"Journal of Radiotherapy in Practice\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiotherapy in Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1460396923000389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiotherapy in Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1460396923000389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Potential advantages of gEUD optimisation as compared with conventional physical optimisation for stereotactic treatment planning
Abstract Introduction: A small number of studies have confirmed the advantage of generalised equivalent uniform dose (gEUD) optimisation for some standard clinical scenarios; however, its performance with complicated stereotactic treatments is yet to be explored. Therefore, this study compared two planning optimisation methods, gEUD and Physical dose, in stereotactic treatments for several complex anatomical locations. Methods: Thirty patients were selected, ten each for sites of brain, lung and spine. Two stereotactic plans were generated for each case using the gEUD objective and Physical objective cost functions. Within each of the three sites, dosimetric indices for conformity, gradient and homogeneity, along with parameters of monitor units and dose–volume histograms (DVHs), were compared for statistical significance. Additionally, patient-specific quality assurance was conducted using portal dosimetry, and the gamma passing rate between the two plans was evaluated. Results: Optimisation was better with a gEUD objective as compared with Physical objective, notably sparing critical organs. Overall, the differences in mean values for six critical organs at risk favoured gEUD-based over Physical-based plans (all six 2-tailed p -values were < 0·0002). Furthermore, all differences in mean values for DVH parameters favoured gEUD-based plans: GTVmean, GTVmax, PTVD100V, homogeneity index, gradient index and monitor unit (treatment time) (each 2-tailed p < 0·05). Conclusions: gEUD optimisation in stereotactic treatment plans has a clear and general statistical advantage over Physical dose optimisation.
期刊介绍:
Journal of Radiotherapy in Practice is a peer-reviewed journal covering all of the current modalities specific to clinical oncology and radiotherapy. The journal aims to publish research from a wide range of styles and encourage debate and the exchange of information and opinion from within the field of radiotherapy practice and clinical oncology. The journal also aims to encourage technical evaluations and case studies as well as equipment reviews that will be of interest to an international radiotherapy audience.