求助PDF
{"title":"基于近红外光谱的苹果可溶性固形物特征波长筛选建模对比分析","authors":"张金富 Zhang Jinfu, 汤斌 Tang Bin, 王建旭 Wang Jianxu, 传焱霏 Chuan Yanfei, 龙邹荣 Long Zourong, 陈庆 Chen Qing, 缪俊锋 Miao Junfeng, 蔡林峰 Cai Linfeng, 赵明富 Zhao Mingfu, 周密 Zhou Mi","doi":"10.3788/lop221956","DOIUrl":null,"url":null,"abstract":"采用近红外光谱进行检测时,光谱波段包含了大量的噪声和散射,这些都影响了模型的稳定性。基于竞争性自适应重加权算法(CARS)和互信息算法(MI)的特征波长筛选方法来建立偏最小二乘(PLS)回归模型,探测苹果内部的可溶性固形物含量(SSC)。通过光谱仪获取800~2400 nm的120个样本的漫反射光谱数据,经过预处理之后的数据通过Kennard-Stone(KS)算法随机选取96个作为校正集,24个作为预测集,然后分别建立全波段PLS模型、CARS-PLS模型和MI-PLS模型来对比分析。结果显示:利用全波段建立PLS模型,模型的决定系数R2为0.8511,模型均方根误差(RMSEC)以及预测均方根误差(RMSEP)分别为0.9413和1.1915;CARS算法筛选的特征波长点变量从303减少到了12,下降了96.03%,建立的PLS模型决定系数R2为0.8746,上升了2.76%,RMSEC和RMSEP分别为0.864和0.9757;MI-PLS模型包含了56个特征波长点,选用的波长占全波长的18.49%,R2、RMSEC和RMSEP分别为0.9218、0.6822和0.8235,MI-PLS与CARS-PLS相比特征波长数增长了64.55%,决定系数R2提高了0.0472。因此CARS和MI算法都能很好地解决光谱数据本身的噪声、散射等问题,可以有效用于特征波段筛选,所建立的模型可以对苹果内部SSC含量进行测定。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"157 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"基于近红外光谱的苹果可溶性固形物特征波长筛选建模对比分析\",\"authors\":\"张金富 Zhang Jinfu, 汤斌 Tang Bin, 王建旭 Wang Jianxu, 传焱霏 Chuan Yanfei, 龙邹荣 Long Zourong, 陈庆 Chen Qing, 缪俊锋 Miao Junfeng, 蔡林峰 Cai Linfeng, 赵明富 Zhao Mingfu, 周密 Zhou Mi\",\"doi\":\"10.3788/lop221956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"采用近红外光谱进行检测时,光谱波段包含了大量的噪声和散射,这些都影响了模型的稳定性。基于竞争性自适应重加权算法(CARS)和互信息算法(MI)的特征波长筛选方法来建立偏最小二乘(PLS)回归模型,探测苹果内部的可溶性固形物含量(SSC)。通过光谱仪获取800~2400 nm的120个样本的漫反射光谱数据,经过预处理之后的数据通过Kennard-Stone(KS)算法随机选取96个作为校正集,24个作为预测集,然后分别建立全波段PLS模型、CARS-PLS模型和MI-PLS模型来对比分析。结果显示:利用全波段建立PLS模型,模型的决定系数R2为0.8511,模型均方根误差(RMSEC)以及预测均方根误差(RMSEP)分别为0.9413和1.1915;CARS算法筛选的特征波长点变量从303减少到了12,下降了96.03%,建立的PLS模型决定系数R2为0.8746,上升了2.76%,RMSEC和RMSEP分别为0.864和0.9757;MI-PLS模型包含了56个特征波长点,选用的波长占全波长的18.49%,R2、RMSEC和RMSEP分别为0.9218、0.6822和0.8235,MI-PLS与CARS-PLS相比特征波长数增长了64.55%,决定系数R2提高了0.0472。因此CARS和MI算法都能很好地解决光谱数据本身的噪声、散射等问题,可以有效用于特征波段筛选,所建立的模型可以对苹果内部SSC含量进行测定。\",\"PeriodicalId\":51502,\"journal\":{\"name\":\"激光与光电子学进展\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"激光与光电子学进展\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/lop221956\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop221956","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用