基于超像素分割与卷积神经网络的高光谱图像分类

IF 0.9 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC 激光与光电子学进展 Pub Date : 2023-01-01 DOI:10.3788/lop222551
陈如俊 Chen Rujun, 普运伟 Pu Yunwei, 吴锋振 Wu Fengzhen, 刘昱岑 Liu Yuceng, 李奇 Li Qi
{"title":"基于超像素分割与卷积神经网络的高光谱图像分类","authors":"陈如俊 Chen Rujun, 普运伟 Pu Yunwei, 吴锋振 Wu Fengzhen, 刘昱岑 Liu Yuceng, 李奇 Li Qi","doi":"10.3788/lop222551","DOIUrl":null,"url":null,"abstract":"针对卷积神经网络(CNN)在分类高光谱图像时空-谱特征利用率不足和分类效率低的问题,提出基于超像素分割与CNN的高光谱图像分类方法。首先利用主成分分析(PCA)提取图像的前12个成分后对前3个主成分进行滤波,对滤波后的3个波段进行超像素分割;然后将样本点映射到超像素内,使其以超像素而不是像素为基本的分类单元;最后利用CNN进行图像分割。在两个公共的数据集WHU-Hi-Longkou和WHU-Hi-HongHu上进行实验,实验结果表明,相比仅利用光谱信息的方法,融合空-谱特征信息的方法的精度得到提升,在两个数据集上的分类精度分别达99.45%和97.60%。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"143 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"基于超像素分割与卷积神经网络的高光谱图像分类\",\"authors\":\"陈如俊 Chen Rujun, 普运伟 Pu Yunwei, 吴锋振 Wu Fengzhen, 刘昱岑 Liu Yuceng, 李奇 Li Qi\",\"doi\":\"10.3788/lop222551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"针对卷积神经网络(CNN)在分类高光谱图像时空-谱特征利用率不足和分类效率低的问题,提出基于超像素分割与CNN的高光谱图像分类方法。首先利用主成分分析(PCA)提取图像的前12个成分后对前3个主成分进行滤波,对滤波后的3个波段进行超像素分割;然后将样本点映射到超像素内,使其以超像素而不是像素为基本的分类单元;最后利用CNN进行图像分割。在两个公共的数据集WHU-Hi-Longkou和WHU-Hi-HongHu上进行实验,实验结果表明,相比仅利用光谱信息的方法,融合空-谱特征信息的方法的精度得到提升,在两个数据集上的分类精度分别达99.45%和97.60%。\",\"PeriodicalId\":51502,\"journal\":{\"name\":\"激光与光电子学进展\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"激光与光电子学进展\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/lop222551\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop222551","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对卷积神经网络(CNN)在分类高光谱图像时空-谱特征利用率不足和分类效率低的问题,提出基于超像素分割与CNN的高光谱图像分类方法。首先利用主成分分析(PCA)提取图像的前12个成分后对前3个主成分进行滤波,对滤波后的3个波段进行超像素分割;然后将样本点映射到超像素内,使其以超像素而不是像素为基本的分类单元;最后利用CNN进行图像分割。在两个公共的数据集WHU-Hi-Longkou和WHU-Hi-HongHu上进行实验,实验结果表明,相比仅利用光谱信息的方法,融合空-谱特征信息的方法的精度得到提升,在两个数据集上的分类精度分别达99.45%和97.60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超像素分割与卷积神经网络的高光谱图像分类
针对卷积神经网络(CNN)在分类高光谱图像时空-谱特征利用率不足和分类效率低的问题,提出基于超像素分割与CNN的高光谱图像分类方法。首先利用主成分分析(PCA)提取图像的前12个成分后对前3个主成分进行滤波,对滤波后的3个波段进行超像素分割;然后将样本点映射到超像素内,使其以超像素而不是像素为基本的分类单元;最后利用CNN进行图像分割。在两个公共的数据集WHU-Hi-Longkou和WHU-Hi-HongHu上进行实验,实验结果表明,相比仅利用光谱信息的方法,融合空-谱特征信息的方法的精度得到提升,在两个数据集上的分类精度分别达99.45%和97.60%。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
50.00%
发文量
18006
期刊介绍: Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.
期刊最新文献
可产生任意偏振方向太赫兹波的光电导太赫兹辐射源 激光填粉焊接B340LA高强钢工艺特性研究 基于电光双光梳光谱的气体含量测量方法研究 Effective Slowing and Trapping of Cs Atoms in an Ultrahigh-Vacuum Apparatus 用于核酸现场检测的直轴型多通道光学检测系统
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1