{"title":"哈密顿no-torsion","authors":"Marcelo S Atallah, Egor Shelukhin","doi":"10.2140/gt.2023.27.2833","DOIUrl":null,"url":null,"abstract":"In 2002 Polterovich has notably established that on closed aspherical symplectic manifolds, Hamiltonian diffeomorphisms of finite order, which we call Hamiltonian torsion, must in fact be trivial. In this paper we prove the first higher-dimensional Hamiltonian no-torsion theorems beyond the symplectically aspherical case. We start by showing that closed symplectic Calabi-Yau and negative monotone symplectic manifolds do not admit Hamiltonian torsion. Going still beyond topological constraints, we prove that every closed positive monotone symplectic manifold $(M,\\omega)$ admitting Hamiltonian torsion is geometrically uniruled by holomorphic spheres for every $\\omega$-compatible almost complex structure, partially answering a question of McDuff-Salamon. This provides many additional no-torsion results, and as a corollary yields the geometric uniruledness of monotone Hamiltonian $S^1$-manifolds, a fact closely related to a celebrated result of McDuff from 2009. Moreover, the non-existence of Hamiltonian torsion implies the triviality of Hamiltonian actions of lattices like $SL(k,\\mathbb{Z})$ for $k \\geq 2,$ as well as those of compact Lie groups. Finally, for monotone symplectic manifolds admitting Hamiltonian torsion, we prove an analogue of Newman's theorem on finite transformation groups for several natural norms on the Hamiltonian group: such subgroups cannot be contained in arbitrarily small neighborhoods of the identity. Our arguments rely on generalized Morse-Bott methods, as well as on quantum Steenrod powers and Smith theory in filtered Floer homology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hamiltonian no-torsion\",\"authors\":\"Marcelo S Atallah, Egor Shelukhin\",\"doi\":\"10.2140/gt.2023.27.2833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2002 Polterovich has notably established that on closed aspherical symplectic manifolds, Hamiltonian diffeomorphisms of finite order, which we call Hamiltonian torsion, must in fact be trivial. In this paper we prove the first higher-dimensional Hamiltonian no-torsion theorems beyond the symplectically aspherical case. We start by showing that closed symplectic Calabi-Yau and negative monotone symplectic manifolds do not admit Hamiltonian torsion. Going still beyond topological constraints, we prove that every closed positive monotone symplectic manifold $(M,\\\\omega)$ admitting Hamiltonian torsion is geometrically uniruled by holomorphic spheres for every $\\\\omega$-compatible almost complex structure, partially answering a question of McDuff-Salamon. This provides many additional no-torsion results, and as a corollary yields the geometric uniruledness of monotone Hamiltonian $S^1$-manifolds, a fact closely related to a celebrated result of McDuff from 2009. Moreover, the non-existence of Hamiltonian torsion implies the triviality of Hamiltonian actions of lattices like $SL(k,\\\\mathbb{Z})$ for $k \\\\geq 2,$ as well as those of compact Lie groups. Finally, for monotone symplectic manifolds admitting Hamiltonian torsion, we prove an analogue of Newman's theorem on finite transformation groups for several natural norms on the Hamiltonian group: such subgroups cannot be contained in arbitrarily small neighborhoods of the identity. Our arguments rely on generalized Morse-Bott methods, as well as on quantum Steenrod powers and Smith theory in filtered Floer homology.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.2833\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2833","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In 2002 Polterovich has notably established that on closed aspherical symplectic manifolds, Hamiltonian diffeomorphisms of finite order, which we call Hamiltonian torsion, must in fact be trivial. In this paper we prove the first higher-dimensional Hamiltonian no-torsion theorems beyond the symplectically aspherical case. We start by showing that closed symplectic Calabi-Yau and negative monotone symplectic manifolds do not admit Hamiltonian torsion. Going still beyond topological constraints, we prove that every closed positive monotone symplectic manifold $(M,\omega)$ admitting Hamiltonian torsion is geometrically uniruled by holomorphic spheres for every $\omega$-compatible almost complex structure, partially answering a question of McDuff-Salamon. This provides many additional no-torsion results, and as a corollary yields the geometric uniruledness of monotone Hamiltonian $S^1$-manifolds, a fact closely related to a celebrated result of McDuff from 2009. Moreover, the non-existence of Hamiltonian torsion implies the triviality of Hamiltonian actions of lattices like $SL(k,\mathbb{Z})$ for $k \geq 2,$ as well as those of compact Lie groups. Finally, for monotone symplectic manifolds admitting Hamiltonian torsion, we prove an analogue of Newman's theorem on finite transformation groups for several natural norms on the Hamiltonian group: such subgroups cannot be contained in arbitrarily small neighborhoods of the identity. Our arguments rely on generalized Morse-Bott methods, as well as on quantum Steenrod powers and Smith theory in filtered Floer homology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.