基于改进分割网络MesU-Net的视网膜图像分割

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Online and Biomedical Engineering Pub Date : 2023-10-25 DOI:10.3991/ijoe.v19i15.41969
Anitha T. Nair, Anitha M. L., Arun Kumar M. N.
{"title":"基于改进分割网络MesU-Net的视网膜图像分割","authors":"Anitha T. Nair, Anitha M. L., Arun Kumar M. N.","doi":"10.3991/ijoe.v19i15.41969","DOIUrl":null,"url":null,"abstract":"Given the immense importance of medical image segmentation and the challenges associated with manual execution, a diverse range of automated medical image segmentation methods have been developed, primarily focusing on specific modalities of images. This paper introduces an innovative segmentation algorithm that effectively segments exudates, hemorrhages, microaneurysms, and blood vessels within retinal images using an enhanced MesNet (MesU-Net) model. By combining the MES-Net model with the U-Net model, this approach achieves accurate results in a shorter period. Consequently, it holds significant potential for clinical application in computer-aided diagnosis. The IDRID and DRIVE datasets are utilized to assess the efficacy of the proposed model for retinal segmentation. The presented method attains segmentation accuracy rates of 97.6%, 98.1%, 99.2%, and 83.7% for exudates, hemorrhages, microaneurysms, and blood vessels, respectively. This proposed model also holds promise for extension to address other medical image segmentation challenges in the future.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of Retinal Images Using Improved Segmentation Network, MesU-Net\",\"authors\":\"Anitha T. Nair, Anitha M. L., Arun Kumar M. N.\",\"doi\":\"10.3991/ijoe.v19i15.41969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the immense importance of medical image segmentation and the challenges associated with manual execution, a diverse range of automated medical image segmentation methods have been developed, primarily focusing on specific modalities of images. This paper introduces an innovative segmentation algorithm that effectively segments exudates, hemorrhages, microaneurysms, and blood vessels within retinal images using an enhanced MesNet (MesU-Net) model. By combining the MES-Net model with the U-Net model, this approach achieves accurate results in a shorter period. Consequently, it holds significant potential for clinical application in computer-aided diagnosis. The IDRID and DRIVE datasets are utilized to assess the efficacy of the proposed model for retinal segmentation. The presented method attains segmentation accuracy rates of 97.6%, 98.1%, 99.2%, and 83.7% for exudates, hemorrhages, microaneurysms, and blood vessels, respectively. This proposed model also holds promise for extension to address other medical image segmentation challenges in the future.\",\"PeriodicalId\":36900,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v19i15.41969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i15.41969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

鉴于医学图像分割的巨大重要性和与手动执行相关的挑战,已经开发了各种各样的自动化医学图像分割方法,主要关注图像的特定模式。本文介绍了一种创新的分割算法,该算法使用增强的MesNet (MesU-Net)模型有效地分割视网膜图像中的渗出物、出血物、微动脉瘤和血管。该方法将MES-Net模型与U-Net模型相结合,可以在较短的时间内获得准确的结果。因此,它在计算机辅助诊断的临床应用中具有重要的潜力。利用IDRID和DRIVE数据集来评估所提出的视网膜分割模型的有效性。该方法对渗出液、出血性、微动脉瘤和血管的分割准确率分别为97.6%、98.1%、99.2%和83.7%。该模型也有望在未来扩展到解决其他医学图像分割挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation of Retinal Images Using Improved Segmentation Network, MesU-Net
Given the immense importance of medical image segmentation and the challenges associated with manual execution, a diverse range of automated medical image segmentation methods have been developed, primarily focusing on specific modalities of images. This paper introduces an innovative segmentation algorithm that effectively segments exudates, hemorrhages, microaneurysms, and blood vessels within retinal images using an enhanced MesNet (MesU-Net) model. By combining the MES-Net model with the U-Net model, this approach achieves accurate results in a shorter period. Consequently, it holds significant potential for clinical application in computer-aided diagnosis. The IDRID and DRIVE datasets are utilized to assess the efficacy of the proposed model for retinal segmentation. The presented method attains segmentation accuracy rates of 97.6%, 98.1%, 99.2%, and 83.7% for exudates, hemorrhages, microaneurysms, and blood vessels, respectively. This proposed model also holds promise for extension to address other medical image segmentation challenges in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
期刊最新文献
Modification of an IMU Based System for Analyzing Hand Kinematics During Activities of Daily Living 3D Pre-Processing Algorithm for MRI Images of Different Stages of AD Segmentation of Retinal Images Using Improved Segmentation Network, MesU-Net Recent Biomaterial Developments for Bone Tissue Engineering and Potential Clinical Application: Narrative Review of the Literature Brain Tumor Localization Using N-Cut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1