摩洛哥Rif地区异质地貌和环境背景下的滑坡危害评估——一种机器学习方法

Q4 Environmental Science Ecological Engineering Environmental Technology Pub Date : 2023-11-01 DOI:10.12912/27197050/172569
Maryem Hamidi, Tarik Bouramtane, Shiny Abraham, Ilias Kacimi, Laurent Barbiero, Nadia Kassou, Vincent Valles, Gad Levy
{"title":"摩洛哥Rif地区异质地貌和环境背景下的滑坡危害评估——一种机器学习方法","authors":"Maryem Hamidi, Tarik Bouramtane, Shiny Abraham, Ilias Kacimi, Laurent Barbiero, Nadia Kassou, Vincent Valles, Gad Levy","doi":"10.12912/27197050/172569","DOIUrl":null,"url":null,"abstract":"Landslides are considered to be one of the most significant and critical natural hazards in the heterogeneous geomor - phological setting of the Rif region of Morocco. Despite the high susceptibility to landslides, the region lacks detailed studies. Therefore, this research introduces four advanced machine learning methods, namely Support Vector Machine (SVM), Classification and Regression Trees (CART), Multivariate Discriminant Analysis (MDA), and Logistic Regres - sion (LR), to perform landslide susceptibility mapping, as well as study of the connection between landslide occurrence and the complex regional geo-environmental context of Taounate province. Fifteen causative factors were extracted, and 255 landslide events were identified through fieldwork and satellite imagery analysis. All models performed very well (AUC > 0.954), while the CART model performed the best (AUC= 0.971). However, SVM demonstrated superior performance compared to other methods, achieving the highest accuracy (89.92%) and F1-measure (81.66%) scores on the training data, and the highest accuracy (83.01%), precision (81.74%), and specificity (79.46%) scores on the test data. The results do not necessarily indicate that LR and MDA have the lowest predictive ability, as they demonstrated high accuracy in terms of AUC and in some classification tasks. Moreover, they provide the significant advantage of easy interpretation of the geo-environmental processes that control landslides. Rainfall is the primary triggering factor of landslides in the study area. The majority of landslides occurred on slopes, particularly those located along rivers and faults, suggesting that landslides in the region are closely associated with active tectonics and precipitation. All four models predicted similar spatial distribution patterns in landslide susceptibility. The results showed that almost half of the area mainly in the north and northwest, has a very high susceptibility to landslides. The findings provide valuable references for land use management and the implementation of effective measures for landslide prevention.","PeriodicalId":52648,"journal":{"name":"Ecological Engineering Environmental Technology","volume":"9 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landslide Hazard Assessment in the Heterogeneous Geomorphological and Environmental Context of the Rif Region, Morocco – A Machine Learning Approach\",\"authors\":\"Maryem Hamidi, Tarik Bouramtane, Shiny Abraham, Ilias Kacimi, Laurent Barbiero, Nadia Kassou, Vincent Valles, Gad Levy\",\"doi\":\"10.12912/27197050/172569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Landslides are considered to be one of the most significant and critical natural hazards in the heterogeneous geomor - phological setting of the Rif region of Morocco. Despite the high susceptibility to landslides, the region lacks detailed studies. Therefore, this research introduces four advanced machine learning methods, namely Support Vector Machine (SVM), Classification and Regression Trees (CART), Multivariate Discriminant Analysis (MDA), and Logistic Regres - sion (LR), to perform landslide susceptibility mapping, as well as study of the connection between landslide occurrence and the complex regional geo-environmental context of Taounate province. Fifteen causative factors were extracted, and 255 landslide events were identified through fieldwork and satellite imagery analysis. All models performed very well (AUC > 0.954), while the CART model performed the best (AUC= 0.971). However, SVM demonstrated superior performance compared to other methods, achieving the highest accuracy (89.92%) and F1-measure (81.66%) scores on the training data, and the highest accuracy (83.01%), precision (81.74%), and specificity (79.46%) scores on the test data. The results do not necessarily indicate that LR and MDA have the lowest predictive ability, as they demonstrated high accuracy in terms of AUC and in some classification tasks. Moreover, they provide the significant advantage of easy interpretation of the geo-environmental processes that control landslides. Rainfall is the primary triggering factor of landslides in the study area. The majority of landslides occurred on slopes, particularly those located along rivers and faults, suggesting that landslides in the region are closely associated with active tectonics and precipitation. All four models predicted similar spatial distribution patterns in landslide susceptibility. The results showed that almost half of the area mainly in the north and northwest, has a very high susceptibility to landslides. The findings provide valuable references for land use management and the implementation of effective measures for landslide prevention.\",\"PeriodicalId\":52648,\"journal\":{\"name\":\"Ecological Engineering Environmental Technology\",\"volume\":\"9 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering Environmental Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12912/27197050/172569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/172569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Landslide Hazard Assessment in the Heterogeneous Geomorphological and Environmental Context of the Rif Region, Morocco – A Machine Learning Approach
Landslides are considered to be one of the most significant and critical natural hazards in the heterogeneous geomor - phological setting of the Rif region of Morocco. Despite the high susceptibility to landslides, the region lacks detailed studies. Therefore, this research introduces four advanced machine learning methods, namely Support Vector Machine (SVM), Classification and Regression Trees (CART), Multivariate Discriminant Analysis (MDA), and Logistic Regres - sion (LR), to perform landslide susceptibility mapping, as well as study of the connection between landslide occurrence and the complex regional geo-environmental context of Taounate province. Fifteen causative factors were extracted, and 255 landslide events were identified through fieldwork and satellite imagery analysis. All models performed very well (AUC > 0.954), while the CART model performed the best (AUC= 0.971). However, SVM demonstrated superior performance compared to other methods, achieving the highest accuracy (89.92%) and F1-measure (81.66%) scores on the training data, and the highest accuracy (83.01%), precision (81.74%), and specificity (79.46%) scores on the test data. The results do not necessarily indicate that LR and MDA have the lowest predictive ability, as they demonstrated high accuracy in terms of AUC and in some classification tasks. Moreover, they provide the significant advantage of easy interpretation of the geo-environmental processes that control landslides. Rainfall is the primary triggering factor of landslides in the study area. The majority of landslides occurred on slopes, particularly those located along rivers and faults, suggesting that landslides in the region are closely associated with active tectonics and precipitation. All four models predicted similar spatial distribution patterns in landslide susceptibility. The results showed that almost half of the area mainly in the north and northwest, has a very high susceptibility to landslides. The findings provide valuable references for land use management and the implementation of effective measures for landslide prevention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Engineering  Environmental Technology
Ecological Engineering Environmental Technology Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.30
自引率
0.00%
发文量
159
审稿时长
8 weeks
期刊最新文献
Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol – Optimization of the Removal by Response Surface Methodology Protection Coordination for Wind Farm Integration in the Kosovo Transmission System Towards a Sustainable Energy Future – The Case for Smart Grids in Jordan GIS and Index-Based Methods for Assessing the Human Health Risk and Characterizing the Groundwater Quality of a Coastal Aquifer Impact of Water Stress on the Planktonic Biodiversity of the Youssef Ben Tachafine Dam (Souss Massa, Morocco)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1