Yi Zhao, Jian Si, Mingkai Jin, Tao Wen, Penghong Guo, Weijiang Chen
{"title":"绕组匝数平行股的短路电流差及其对电磁力分布的影响","authors":"Yi Zhao, Jian Si, Mingkai Jin, Tao Wen, Penghong Guo, Weijiang Chen","doi":"10.1049/elp2.12377","DOIUrl":null,"url":null,"abstract":"<p>Transformer winding turns often consist of multiple parallel strands. The spatial position variation of each strand affects the leakage inductance of each branch, resulting in an uneven distribution of short-circuit currents within the winding turns. And this unevenness persists even when transposition structures are implemented. Traditional methods in transformer analysis frequently overlooked the distribution characteristics of short-circuit currents when calculating electromagnetic forces. A frequency-domain calculation method for analysing the current distribution in winding turns was proposed, with a deviation of less than 3% compared to existing analysis methods. Two typical 110 kV transformer models were utilised to investigate the influence of uneven current distribution on the spatial distribution of electromagnetic forces. The spatial distribution of short-circuit electromagnetic forces in low-voltage (LV) windings exhibited significant changes, with maximum change rates of 10% and 61.2% for axial and radial electromagnetic force, respectively, in a LV winding with 4 parallel strands. The research also analysed how strand radial width and axial height affect current distribution unevenness and proposed specific design principles to mitigate these disparities in winding design. The findings offer valuable insights for selecting structural parameters and assessing short-circuit stability during transformer design.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12377","citationCount":"0","resultStr":"{\"title\":\"Short-circuit current difference of parallel strands in winding turns and its influence on the distribution of electromagnetic force\",\"authors\":\"Yi Zhao, Jian Si, Mingkai Jin, Tao Wen, Penghong Guo, Weijiang Chen\",\"doi\":\"10.1049/elp2.12377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transformer winding turns often consist of multiple parallel strands. The spatial position variation of each strand affects the leakage inductance of each branch, resulting in an uneven distribution of short-circuit currents within the winding turns. And this unevenness persists even when transposition structures are implemented. Traditional methods in transformer analysis frequently overlooked the distribution characteristics of short-circuit currents when calculating electromagnetic forces. A frequency-domain calculation method for analysing the current distribution in winding turns was proposed, with a deviation of less than 3% compared to existing analysis methods. Two typical 110 kV transformer models were utilised to investigate the influence of uneven current distribution on the spatial distribution of electromagnetic forces. The spatial distribution of short-circuit electromagnetic forces in low-voltage (LV) windings exhibited significant changes, with maximum change rates of 10% and 61.2% for axial and radial electromagnetic force, respectively, in a LV winding with 4 parallel strands. The research also analysed how strand radial width and axial height affect current distribution unevenness and proposed specific design principles to mitigate these disparities in winding design. The findings offer valuable insights for selecting structural parameters and assessing short-circuit stability during transformer design.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12377\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12377\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Short-circuit current difference of parallel strands in winding turns and its influence on the distribution of electromagnetic force
Transformer winding turns often consist of multiple parallel strands. The spatial position variation of each strand affects the leakage inductance of each branch, resulting in an uneven distribution of short-circuit currents within the winding turns. And this unevenness persists even when transposition structures are implemented. Traditional methods in transformer analysis frequently overlooked the distribution characteristics of short-circuit currents when calculating electromagnetic forces. A frequency-domain calculation method for analysing the current distribution in winding turns was proposed, with a deviation of less than 3% compared to existing analysis methods. Two typical 110 kV transformer models were utilised to investigate the influence of uneven current distribution on the spatial distribution of electromagnetic forces. The spatial distribution of short-circuit electromagnetic forces in low-voltage (LV) windings exhibited significant changes, with maximum change rates of 10% and 61.2% for axial and radial electromagnetic force, respectively, in a LV winding with 4 parallel strands. The research also analysed how strand radial width and axial height affect current distribution unevenness and proposed specific design principles to mitigate these disparities in winding design. The findings offer valuable insights for selecting structural parameters and assessing short-circuit stability during transformer design.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.