电力网络物理强耦合特性下网络攻击风险跨空间传导评估方法

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Information Security Pub Date : 2023-10-25 DOI:10.1049/2023/9006166
Shenjian Qiu, Jiaxuan Fei, Jian Wang
{"title":"电力网络物理强耦合特性下网络攻击风险跨空间传导评估方法","authors":"Shenjian Qiu, Jiaxuan Fei, Jian Wang","doi":"10.1049/2023/9006166","DOIUrl":null,"url":null,"abstract":"With the deep integration and wide application of advanced digital sensing, Internet of Things technology, and energy technology in power systems. Power information systems and physical systems are gradually being coupled and developed into power cyber–physical systems (CPS). A number of blackouts in recent years have shown that cyberspace cyber attacks on CPS can lead to the intensification and rapid spread of faults in the physical space of the power grid, and even system collapse. Aiming at the difficulty of analyzing the evolution of cyber–physical cross-space impacts of cyber-attacks, this paper proposes a cross-domain propagation impact assessment method that considers cyber–physical coupling risks caused by attacks. First, according to the multiple coupling relationship between the power system information space and physical space, the monitoring function model and the control function model are established. Second, under the effect of high-concealment attack, analyze the impact of the risk caused by its failure after it is transmitted to the physical space with different propagation probabilities. Finally, the experimental verification was carried out using the IEEE RTS79 standard test system. The simulation results show that the proposed method can comprehensively consider the cyber–physical energy supply coupling relationship, the risk propagation probability, and the operating characteristics of the information system, and effectively quantify and evaluate the impact of information space network attacks on the physical space entity power grid. It further reveals the objective law that information space risks can evolve and spread across domains under the condition of strong coupling of information physics.","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"142 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Space Conduction Assessment Method of Network Attack Risk under the Strong Coupling Characteristics of Electric Power Cyber Physics\",\"authors\":\"Shenjian Qiu, Jiaxuan Fei, Jian Wang\",\"doi\":\"10.1049/2023/9006166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the deep integration and wide application of advanced digital sensing, Internet of Things technology, and energy technology in power systems. Power information systems and physical systems are gradually being coupled and developed into power cyber–physical systems (CPS). A number of blackouts in recent years have shown that cyberspace cyber attacks on CPS can lead to the intensification and rapid spread of faults in the physical space of the power grid, and even system collapse. Aiming at the difficulty of analyzing the evolution of cyber–physical cross-space impacts of cyber-attacks, this paper proposes a cross-domain propagation impact assessment method that considers cyber–physical coupling risks caused by attacks. First, according to the multiple coupling relationship between the power system information space and physical space, the monitoring function model and the control function model are established. Second, under the effect of high-concealment attack, analyze the impact of the risk caused by its failure after it is transmitted to the physical space with different propagation probabilities. Finally, the experimental verification was carried out using the IEEE RTS79 standard test system. The simulation results show that the proposed method can comprehensively consider the cyber–physical energy supply coupling relationship, the risk propagation probability, and the operating characteristics of the information system, and effectively quantify and evaluate the impact of information space network attacks on the physical space entity power grid. It further reveals the objective law that information space risks can evolve and spread across domains under the condition of strong coupling of information physics.\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/9006166\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/9006166","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着先进的数字传感、物联网技术和能源技术在电力系统中的深度融合和广泛应用。电力信息系统与物理系统正逐步耦合发展成为电力信息物理系统。近年来的多次停电事件表明,网络空间对CPS的网络攻击会导致电网物理空间故障的加剧和迅速蔓延,甚至导致系统崩溃。针对网络攻击的网络物理跨空间影响演化分析困难的问题,提出了一种考虑攻击引起的网络物理耦合风险的跨域传播影响评估方法。首先,根据电力系统信息空间与物理空间的多重耦合关系,建立了监测功能模型和控制功能模型;其次,在高隐蔽性攻击作用下,分析其失效风险以不同传播概率传播到物理空间后的影响。最后,利用IEEE RTS79标准测试系统进行了实验验证。仿真结果表明,该方法能够综合考虑信息空间网络攻击对物理空间实体电网的影响,综合考虑信息空间网络的能量供应耦合关系、风险传播概率和信息系统的运行特点,有效地量化和评估信息空间网络攻击对物理空间实体电网的影响。进一步揭示了信息物理强耦合条件下信息空间风险跨域演化和扩散的客观规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Space Conduction Assessment Method of Network Attack Risk under the Strong Coupling Characteristics of Electric Power Cyber Physics
With the deep integration and wide application of advanced digital sensing, Internet of Things technology, and energy technology in power systems. Power information systems and physical systems are gradually being coupled and developed into power cyber–physical systems (CPS). A number of blackouts in recent years have shown that cyberspace cyber attacks on CPS can lead to the intensification and rapid spread of faults in the physical space of the power grid, and even system collapse. Aiming at the difficulty of analyzing the evolution of cyber–physical cross-space impacts of cyber-attacks, this paper proposes a cross-domain propagation impact assessment method that considers cyber–physical coupling risks caused by attacks. First, according to the multiple coupling relationship between the power system information space and physical space, the monitoring function model and the control function model are established. Second, under the effect of high-concealment attack, analyze the impact of the risk caused by its failure after it is transmitted to the physical space with different propagation probabilities. Finally, the experimental verification was carried out using the IEEE RTS79 standard test system. The simulation results show that the proposed method can comprehensively consider the cyber–physical energy supply coupling relationship, the risk propagation probability, and the operating characteristics of the information system, and effectively quantify and evaluate the impact of information space network attacks on the physical space entity power grid. It further reveals the objective law that information space risks can evolve and spread across domains under the condition of strong coupling of information physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
期刊最新文献
Functional Message Authentication Codes With Message and Function Privacy Lattice-Based CP-ABE for Optimal Broadcast Encryption With Polynomial-Depth Circuits Full-Accessible Multiparty Searchable Encryption Scheme for Shared Cloud Storage A Trust Based Anomaly Detection Scheme Using a Hybrid Deep Learning Model for IoT Routing Attacks Mitigation A Comprehensive Investigation of Anomaly Detection Methods in Deep Learning and Machine Learning: 2019–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1