复杂三维几何上的多步冰积

A. Donizetti
{"title":"复杂三维几何上的多步冰积","authors":"A. Donizetti","doi":"10.21741/9781644902813-40","DOIUrl":null,"url":null,"abstract":"Abstract. This work presents the Politecnico di Milano Icing Research Group's contribution to developing new numerical tools and methodologies for simulating long-term in-flight icing over complex three-dimensional geometries. PoliMIce is an in-house ice accretion software that includes state-of-the-art solvers for the dispersed phase to compute the droplets’ impact on the aircraft, and ice accretion models, including the exact local solution of the unsteady Stefan problem. PoliMIce has also been extensively developed for the simulation and robust design optimization of thermal ice protection systems. A crucial aspect that characterizes and makes numerical simulations challenging is the formation, and evolution in time of complex ice geometries, resulting from the ice accretion over the body surface and/or previously formed ice. A multi-step procedure is implemented since the aerodynamic flow field is coupled with ice accretion. The total icing exposure time is subdivided into smaller time steps. At each time step, a three-dimensional body-fitted mesh suitable for the computation of the aerodynamic flow field around the updated geometry is generated automatically. The novel remeshing procedure is based on an implicit domain representation of the ice-air interface through a level-set method and Delaunay triangulation to generate a new conformal body-fitted mesh. In this work, the unique capabilities of the PoliMIce suite are employed to perform automatic multi-step ice accretion simulations over a swept wing in glaze ice conditions. Numerical simulations are hence compared with the available experimental data.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-step ice accretion on complex three-dimensional geometries\",\"authors\":\"A. Donizetti\",\"doi\":\"10.21741/9781644902813-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This work presents the Politecnico di Milano Icing Research Group's contribution to developing new numerical tools and methodologies for simulating long-term in-flight icing over complex three-dimensional geometries. PoliMIce is an in-house ice accretion software that includes state-of-the-art solvers for the dispersed phase to compute the droplets’ impact on the aircraft, and ice accretion models, including the exact local solution of the unsteady Stefan problem. PoliMIce has also been extensively developed for the simulation and robust design optimization of thermal ice protection systems. A crucial aspect that characterizes and makes numerical simulations challenging is the formation, and evolution in time of complex ice geometries, resulting from the ice accretion over the body surface and/or previously formed ice. A multi-step procedure is implemented since the aerodynamic flow field is coupled with ice accretion. The total icing exposure time is subdivided into smaller time steps. At each time step, a three-dimensional body-fitted mesh suitable for the computation of the aerodynamic flow field around the updated geometry is generated automatically. The novel remeshing procedure is based on an implicit domain representation of the ice-air interface through a level-set method and Delaunay triangulation to generate a new conformal body-fitted mesh. In this work, the unique capabilities of the PoliMIce suite are employed to perform automatic multi-step ice accretion simulations over a swept wing in glaze ice conditions. Numerical simulations are hence compared with the available experimental data.\",\"PeriodicalId\":87445,\"journal\":{\"name\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644902813-40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Society symposia proceedings. Materials Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902813-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要这项工作展示了米兰理工大学结冰研究小组在开发新的数值工具和方法方面的贡献,这些工具和方法用于模拟复杂三维几何形状的长期飞行结冰。PoliMIce是一款内部冰积软件,包括最先进的分散相解算器,用于计算液滴对飞机的影响,以及冰积模型,包括非定常Stefan问题的精确局部解。PoliMIce还广泛用于热冰防护系统的模拟和稳健设计优化。复杂冰几何形状的形成和随时间的演变是表征数值模拟的一个关键方面,也是使数值模拟具有挑战性的一个关键方面。复杂冰几何形状的形成和演变是由身体表面的冰积累和/或先前形成的冰造成的。由于空气动力流场与冰的吸积相耦合,采用了多步骤的过程。总结冰暴露时间被细分为更小的时间步长。在每个时间步长,自动生成一个适合于计算更新几何图形周围气动流场的三维拟体网格。该方法基于冰-空气界面的隐式域表示,通过水平集法和Delaunay三角剖分生成新的保形体拟合网格。在这项工作中,PoliMIce套件的独特功能被用于在釉冰条件下的后掠翼上执行自动多步冰积累模拟。因此,将数值模拟与现有的实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-step ice accretion on complex three-dimensional geometries
Abstract. This work presents the Politecnico di Milano Icing Research Group's contribution to developing new numerical tools and methodologies for simulating long-term in-flight icing over complex three-dimensional geometries. PoliMIce is an in-house ice accretion software that includes state-of-the-art solvers for the dispersed phase to compute the droplets’ impact on the aircraft, and ice accretion models, including the exact local solution of the unsteady Stefan problem. PoliMIce has also been extensively developed for the simulation and robust design optimization of thermal ice protection systems. A crucial aspect that characterizes and makes numerical simulations challenging is the formation, and evolution in time of complex ice geometries, resulting from the ice accretion over the body surface and/or previously formed ice. A multi-step procedure is implemented since the aerodynamic flow field is coupled with ice accretion. The total icing exposure time is subdivided into smaller time steps. At each time step, a three-dimensional body-fitted mesh suitable for the computation of the aerodynamic flow field around the updated geometry is generated automatically. The novel remeshing procedure is based on an implicit domain representation of the ice-air interface through a level-set method and Delaunay triangulation to generate a new conformal body-fitted mesh. In this work, the unique capabilities of the PoliMIce suite are employed to perform automatic multi-step ice accretion simulations over a swept wing in glaze ice conditions. Numerical simulations are hence compared with the available experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a wedge in water: assessment of the modeling keyword, presence of cavitation and choice of the filter most suitable for the case study Hybrid graph-clothoid based path planning for a fixed wing aircraft Trajectory optimization and multiple-sliding-surface terminal guidance in the lifting atmospheric reentry An energy-based design approach in the aero-structural optimization of a morphing aileron Feasibility analysis of a CubeSat mission for space rider observation and docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1