ISRU月球资产的激光传输技术持续授权:CIRA方法

M.C. Noviello
{"title":"ISRU月球资产的激光传输技术持续授权:CIRA方法","authors":"M.C. Noviello","doi":"10.21741/9781644902813-105","DOIUrl":null,"url":null,"abstract":"Abstract. Due to the potential possibility of changing the dynamics of the New Space Economy, In-Situ Resource Utilization (ISRU) is acquiring more and more importance within the Space Exploration scenario. Indeed, the closest space missions will return humans to the Moon, while planning the long-term stay. This aspect opens the way to the need for employment and processing of local resources, with the aim of reducing the dependence on Earth-based resources, also ensuring the financial sustainability of the space exploration programs. ISRU technologies will demand for energy values likely to be in the Megawatt range and, eventually, at Gigawatt levels, to be ensured in the harsh hazardous environmental conditions of the celestial bodies (e.g. Moon, Mars, Near Earth Asteroids). This work, performed by the CIRA TEES Laboratory, provides the CIRA approach to the feasibility study concerning the Laser Power Transmission (LPT) technologies for Moon assets empowering. The aim is to evaluate whether LPT can be a potentially efficient solution for continuous power delivery from an orbiting source device, considering long-distance wireless employments and severe environmental conditions, to drive ISRU Moon assets (habitats, rovers, local industrial plants, conveyance facilities, et cetera). For the purpose of this study, starting from the space mission identification, an increasing complexity multi-step approach was properly conceived by CIRA to design the dedicated LPT system responding to the evaluated mission requirements.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous empowering with laser power transmission technologies for ISRU moon assets: CIRA approach\",\"authors\":\"M.C. Noviello\",\"doi\":\"10.21741/9781644902813-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Due to the potential possibility of changing the dynamics of the New Space Economy, In-Situ Resource Utilization (ISRU) is acquiring more and more importance within the Space Exploration scenario. Indeed, the closest space missions will return humans to the Moon, while planning the long-term stay. This aspect opens the way to the need for employment and processing of local resources, with the aim of reducing the dependence on Earth-based resources, also ensuring the financial sustainability of the space exploration programs. ISRU technologies will demand for energy values likely to be in the Megawatt range and, eventually, at Gigawatt levels, to be ensured in the harsh hazardous environmental conditions of the celestial bodies (e.g. Moon, Mars, Near Earth Asteroids). This work, performed by the CIRA TEES Laboratory, provides the CIRA approach to the feasibility study concerning the Laser Power Transmission (LPT) technologies for Moon assets empowering. The aim is to evaluate whether LPT can be a potentially efficient solution for continuous power delivery from an orbiting source device, considering long-distance wireless employments and severe environmental conditions, to drive ISRU Moon assets (habitats, rovers, local industrial plants, conveyance facilities, et cetera). For the purpose of this study, starting from the space mission identification, an increasing complexity multi-step approach was properly conceived by CIRA to design the dedicated LPT system responding to the evaluated mission requirements.\",\"PeriodicalId\":87445,\"journal\":{\"name\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Society symposia proceedings. Materials Research Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644902813-105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Society symposia proceedings. Materials Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902813-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要由于改变新空间经济动态的潜在可能性,原位资源利用(ISRU)在空间探索场景中变得越来越重要。事实上,最近的太空任务将把人类送回月球,同时计划长期停留。这方面为当地资源的就业和加工需求开辟了道路,目的是减少对地球资源的依赖,并确保空间探索方案的财政可持续性。ISRU技术对能量的需求可能达到兆瓦级,最终将达到千兆瓦级,以确保在天体(如月球、火星、近地小行星)恶劣的危险环境条件下运行。这项工作由CIRA TEES实验室执行,为CIRA关于月球资产授权的激光功率传输(LPT)技术的可行性研究提供了方法。目的是评估LPT是否可以作为一种潜在的有效解决方案,从轨道源设备持续供电,考虑到远距离无线就业和恶劣的环境条件,驱动ISRU月球资产(栖息地,漫游者,当地工业工厂,运输设施等)。本研究从空间任务识别出发,适当地构思了一种日益复杂的多步骤方法来设计响应评估任务需求的专用LPT系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous empowering with laser power transmission technologies for ISRU moon assets: CIRA approach
Abstract. Due to the potential possibility of changing the dynamics of the New Space Economy, In-Situ Resource Utilization (ISRU) is acquiring more and more importance within the Space Exploration scenario. Indeed, the closest space missions will return humans to the Moon, while planning the long-term stay. This aspect opens the way to the need for employment and processing of local resources, with the aim of reducing the dependence on Earth-based resources, also ensuring the financial sustainability of the space exploration programs. ISRU technologies will demand for energy values likely to be in the Megawatt range and, eventually, at Gigawatt levels, to be ensured in the harsh hazardous environmental conditions of the celestial bodies (e.g. Moon, Mars, Near Earth Asteroids). This work, performed by the CIRA TEES Laboratory, provides the CIRA approach to the feasibility study concerning the Laser Power Transmission (LPT) technologies for Moon assets empowering. The aim is to evaluate whether LPT can be a potentially efficient solution for continuous power delivery from an orbiting source device, considering long-distance wireless employments and severe environmental conditions, to drive ISRU Moon assets (habitats, rovers, local industrial plants, conveyance facilities, et cetera). For the purpose of this study, starting from the space mission identification, an increasing complexity multi-step approach was properly conceived by CIRA to design the dedicated LPT system responding to the evaluated mission requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a wedge in water: assessment of the modeling keyword, presence of cavitation and choice of the filter most suitable for the case study Hybrid graph-clothoid based path planning for a fixed wing aircraft Trajectory optimization and multiple-sliding-surface terminal guidance in the lifting atmospheric reentry An energy-based design approach in the aero-structural optimization of a morphing aileron Feasibility analysis of a CubeSat mission for space rider observation and docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1