TTTFlow:使用规范化流进行无监督测试时间训练

David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ismail Ben Ayed, Christian Desrosiers
{"title":"TTTFlow:使用规范化流进行无监督测试时间训练","authors":"David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ismail Ben Ayed, Christian Desrosiers","doi":"10.1109/wacv56688.2023.00216","DOIUrl":null,"url":null,"abstract":"A major problem of deep neural networks for image classification is their vulnerability to domain changes at test-time. Recent methods have proposed to address this problem with test-time training (TTT), where a two-branch model is trained to learn a main classification task and also a self-supervised task used to perform test-time adaptation. However, these techniques require defining a proxy task specific to the target application. To tackle this limitation, we propose TTTFlow: a Y-shaped architecture using an unsupervised head based on Normalizing Flows to learn the nor-mal distribution of latent features and detect domain shifts in test examples. At inference, keeping the unsupervised head fixed, we adapt the model to domain-shifted examples by maximizing the log likelihood of the Normalizing Flow. Our results show that our method can significantly improve the accuracy with respect to previous works.","PeriodicalId":497882,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TTTFlow: Unsupervised Test-Time Training with Normalizing Flow\",\"authors\":\"David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ismail Ben Ayed, Christian Desrosiers\",\"doi\":\"10.1109/wacv56688.2023.00216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major problem of deep neural networks for image classification is their vulnerability to domain changes at test-time. Recent methods have proposed to address this problem with test-time training (TTT), where a two-branch model is trained to learn a main classification task and also a self-supervised task used to perform test-time adaptation. However, these techniques require defining a proxy task specific to the target application. To tackle this limitation, we propose TTTFlow: a Y-shaped architecture using an unsupervised head based on Normalizing Flows to learn the nor-mal distribution of latent features and detect domain shifts in test examples. At inference, keeping the unsupervised head fixed, we adapt the model to domain-shifted examples by maximizing the log likelihood of the Normalizing Flow. Our results show that our method can significantly improve the accuracy with respect to previous works.\",\"PeriodicalId\":497882,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wacv56688.2023.00216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wacv56688.2023.00216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

深度神经网络用于图像分类的一个主要问题是在测试时容易受到域变化的影响。最近提出的方法是通过测试时间训练(TTT)来解决这个问题,其中训练一个双分支模型来学习一个主要的分类任务和一个用于执行测试时间适应的自监督任务。但是,这些技术需要定义特定于目标应用程序的代理任务。为了解决这一限制,我们提出了TTTFlow:一个使用基于Normalizing Flows的无监督头部的y形架构,以学习潜在特征的正态分布并检测测试示例中的域移位。在推理中,保持无监督头部固定,我们通过最大化归一化流的对数似然来使模型适应域移位的例子。实验结果表明,该方法相对于以往的工作,可以显著提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TTTFlow: Unsupervised Test-Time Training with Normalizing Flow
A major problem of deep neural networks for image classification is their vulnerability to domain changes at test-time. Recent methods have proposed to address this problem with test-time training (TTT), where a two-branch model is trained to learn a main classification task and also a self-supervised task used to perform test-time adaptation. However, these techniques require defining a proxy task specific to the target application. To tackle this limitation, we propose TTTFlow: a Y-shaped architecture using an unsupervised head based on Normalizing Flows to learn the nor-mal distribution of latent features and detect domain shifts in test examples. At inference, keeping the unsupervised head fixed, we adapt the model to domain-shifted examples by maximizing the log likelihood of the Normalizing Flow. Our results show that our method can significantly improve the accuracy with respect to previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Supervised 2D/3D Registration for X-Ray to CT Image Fusion TTTFlow: Unsupervised Test-Time Training with Normalizing Flow Visually explaining 3D-CNN predictions for video classification with an adaptive occlusion sensitivity analysis Ego-Vehicle Action Recognition based on Semi-Supervised Contrastive Learning X-Align: Cross-Modal Cross-View Alignment for Bird’s-Eye-View Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1