{"title":"法律案例检索的意图分类","authors":"Yunqiu Shao, Haitao Li, Yueyue Wu, Yiqun Liu, Qingyao Ai, Jiaxin Mao, Yixiao Ma, Shaoping Ma","doi":"10.1145/3626093","DOIUrl":null,"url":null,"abstract":"Legal case retrieval is a special Information Retrieval (IR) task focusing on legal case documents. Depending on the downstream tasks of the retrieved case documents, users’ information needs in legal case retrieval could be significantly different from those in Web search and traditional ad-hoc retrieval tasks. While there are several studies that retrieve legal cases based on text similarity, the underlying search intents of legal retrieval users, as shown in this paper, are more complicated than that yet mostly unexplored. To this end, we present a novel hierarchical intent taxonomy of legal case retrieval. It consists of five intent types categorized by three criteria, i.e., search for Particular Case(s) , Characterization , Penalty , Procedure , and Interest . The taxonomy was constructed transparently and evaluated extensively through interviews, editorial user studies, and query log analysis. Through a laboratory user study, we reveal significant differences in user behavior and satisfaction under different search intents in legal case retrieval. Furthermore, we apply the proposed taxonomy to various downstream legal retrieval tasks, e.g., result ranking and satisfaction prediction, and demonstrate its effectiveness. Our work provides important insights into the understanding of user intents in legal case retrieval and potentially leads to better retrieval techniques in the legal domain, such as intent-aware ranking strategies and evaluation methodologies.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"50 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Intent Taxonomy of Legal Case Retrieval\",\"authors\":\"Yunqiu Shao, Haitao Li, Yueyue Wu, Yiqun Liu, Qingyao Ai, Jiaxin Mao, Yixiao Ma, Shaoping Ma\",\"doi\":\"10.1145/3626093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Legal case retrieval is a special Information Retrieval (IR) task focusing on legal case documents. Depending on the downstream tasks of the retrieved case documents, users’ information needs in legal case retrieval could be significantly different from those in Web search and traditional ad-hoc retrieval tasks. While there are several studies that retrieve legal cases based on text similarity, the underlying search intents of legal retrieval users, as shown in this paper, are more complicated than that yet mostly unexplored. To this end, we present a novel hierarchical intent taxonomy of legal case retrieval. It consists of five intent types categorized by three criteria, i.e., search for Particular Case(s) , Characterization , Penalty , Procedure , and Interest . The taxonomy was constructed transparently and evaluated extensively through interviews, editorial user studies, and query log analysis. Through a laboratory user study, we reveal significant differences in user behavior and satisfaction under different search intents in legal case retrieval. Furthermore, we apply the proposed taxonomy to various downstream legal retrieval tasks, e.g., result ranking and satisfaction prediction, and demonstrate its effectiveness. Our work provides important insights into the understanding of user intents in legal case retrieval and potentially leads to better retrieval techniques in the legal domain, such as intent-aware ranking strategies and evaluation methodologies.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626093\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626093","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Legal case retrieval is a special Information Retrieval (IR) task focusing on legal case documents. Depending on the downstream tasks of the retrieved case documents, users’ information needs in legal case retrieval could be significantly different from those in Web search and traditional ad-hoc retrieval tasks. While there are several studies that retrieve legal cases based on text similarity, the underlying search intents of legal retrieval users, as shown in this paper, are more complicated than that yet mostly unexplored. To this end, we present a novel hierarchical intent taxonomy of legal case retrieval. It consists of five intent types categorized by three criteria, i.e., search for Particular Case(s) , Characterization , Penalty , Procedure , and Interest . The taxonomy was constructed transparently and evaluated extensively through interviews, editorial user studies, and query log analysis. Through a laboratory user study, we reveal significant differences in user behavior and satisfaction under different search intents in legal case retrieval. Furthermore, we apply the proposed taxonomy to various downstream legal retrieval tasks, e.g., result ranking and satisfaction prediction, and demonstrate its effectiveness. Our work provides important insights into the understanding of user intents in legal case retrieval and potentially leads to better retrieval techniques in the legal domain, such as intent-aware ranking strategies and evaluation methodologies.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.