{"title":"基于自旋轨道磁随机存取存储器的二进制CNN内存加速器(BIMA)","authors":"K. Kalaichelvi, M. Sundaram, P. Sanmugavalli","doi":"10.3233/jifs-223898","DOIUrl":null,"url":null,"abstract":"The research tends to suggest a spin-orbit torque magnetic random access memory (SOT-MRAM)-based Binary CNN In-Memory Accelerator (BIMA) to minimize power utilization and suggests an In-Memory Computing (IMC) for AdderNet-based BIMA to further enhance performance by fully utilizing the benefits of IMC as well as a low current consumption configuration employing SOT-MRAM. And recommended an IMC-friendly computation pipeline for AdderNet convolution at the algorithm level. Additionally, the suggested sense amplifier is not only capable of the addition operation but also typical Boolean operations including subtraction etc. The architecture suggested in this research consumes less power than its spin-orbit torque (STT) MRAM and resistive random access memory (ReRAM)-based counterparts in the Modified National Institute of Standards and Technology (MNIST) data set, according to simulation results. Based to evaluation outcomes, the pre-sented strategy outperforms the in-memory accelerator in terms of speedup and energy efficiency by 17.13× and 18.20×, respectively.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"119 23","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin orbit magnetic random access memory based binary CNN in-memory accelerator (BIMA) with sense amplifier\",\"authors\":\"K. Kalaichelvi, M. Sundaram, P. Sanmugavalli\",\"doi\":\"10.3233/jifs-223898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research tends to suggest a spin-orbit torque magnetic random access memory (SOT-MRAM)-based Binary CNN In-Memory Accelerator (BIMA) to minimize power utilization and suggests an In-Memory Computing (IMC) for AdderNet-based BIMA to further enhance performance by fully utilizing the benefits of IMC as well as a low current consumption configuration employing SOT-MRAM. And recommended an IMC-friendly computation pipeline for AdderNet convolution at the algorithm level. Additionally, the suggested sense amplifier is not only capable of the addition operation but also typical Boolean operations including subtraction etc. The architecture suggested in this research consumes less power than its spin-orbit torque (STT) MRAM and resistive random access memory (ReRAM)-based counterparts in the Modified National Institute of Standards and Technology (MNIST) data set, according to simulation results. Based to evaluation outcomes, the pre-sented strategy outperforms the in-memory accelerator in terms of speedup and energy efficiency by 17.13× and 18.20×, respectively.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"119 23\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-223898\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-223898","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Spin orbit magnetic random access memory based binary CNN in-memory accelerator (BIMA) with sense amplifier
The research tends to suggest a spin-orbit torque magnetic random access memory (SOT-MRAM)-based Binary CNN In-Memory Accelerator (BIMA) to minimize power utilization and suggests an In-Memory Computing (IMC) for AdderNet-based BIMA to further enhance performance by fully utilizing the benefits of IMC as well as a low current consumption configuration employing SOT-MRAM. And recommended an IMC-friendly computation pipeline for AdderNet convolution at the algorithm level. Additionally, the suggested sense amplifier is not only capable of the addition operation but also typical Boolean operations including subtraction etc. The architecture suggested in this research consumes less power than its spin-orbit torque (STT) MRAM and resistive random access memory (ReRAM)-based counterparts in the Modified National Institute of Standards and Technology (MNIST) data set, according to simulation results. Based to evaluation outcomes, the pre-sented strategy outperforms the in-memory accelerator in terms of speedup and energy efficiency by 17.13× and 18.20×, respectively.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.