Viet Huong Nguyen, Hang Tran Thi My, Huong T.T. Ta, Kha Anh Vuong, Hoai Hue Nguyen, Thien Thanh Nguyen, Ngoc Linh Nguyen, Hao Van Bui
{"title":"揭示简并掺杂SnO2薄膜中电子迁移率的限制因素","authors":"Viet Huong Nguyen, Hang Tran Thi My, Huong T.T. Ta, Kha Anh Vuong, Hoai Hue Nguyen, Thien Thanh Nguyen, Ngoc Linh Nguyen, Hao Van Bui","doi":"10.1088/2043-6262/ad08a0","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a comprehensive theoretical study on electron mobility in highly doped polycrystalline SnO 2 thin films, a widely employed material in modern devices. Our physical model incorporates phonon-electron interaction, ionised impurity, and grain boundaries as scattering mechanisms, effectively explaining the temperature and electron density-dependent variation of electron mobility in doped polycrystalline SnO 2 thin films. We highlight the significant influence of trap density at grain boundaries, the self-compensation effect, and average grain size on the theoretical limit of electron mobility. At a doping level of 10 19 cm −3 , the limit is estimated at 100 cm 2 .V −1 .s −1 , while for 10 20 cm −3 , it reduces to 50 cm 2 .V −1 .s −1 . These factors are strongly influenced by deposition conditions, including temperature, precursor chemistry, and deposition atmosphere. By analysing Hall mobility with respect to carrier density, temperature, or film thickness using our model, a better understanding of the limiting mechanisms in electron mobility can be achieved. This knowledge can guide the development of appropriate experimental strategies to enhance electron mobility in highly doped polycrystalline SnO 2 films for advancing the performance of SnO 2 -based devices across various applications.","PeriodicalId":56371,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"117 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the limiting factors to electron mobility in degenerately doped SnO<sub>2</sub> thin films\",\"authors\":\"Viet Huong Nguyen, Hang Tran Thi My, Huong T.T. Ta, Kha Anh Vuong, Hoai Hue Nguyen, Thien Thanh Nguyen, Ngoc Linh Nguyen, Hao Van Bui\",\"doi\":\"10.1088/2043-6262/ad08a0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a comprehensive theoretical study on electron mobility in highly doped polycrystalline SnO 2 thin films, a widely employed material in modern devices. Our physical model incorporates phonon-electron interaction, ionised impurity, and grain boundaries as scattering mechanisms, effectively explaining the temperature and electron density-dependent variation of electron mobility in doped polycrystalline SnO 2 thin films. We highlight the significant influence of trap density at grain boundaries, the self-compensation effect, and average grain size on the theoretical limit of electron mobility. At a doping level of 10 19 cm −3 , the limit is estimated at 100 cm 2 .V −1 .s −1 , while for 10 20 cm −3 , it reduces to 50 cm 2 .V −1 .s −1 . These factors are strongly influenced by deposition conditions, including temperature, precursor chemistry, and deposition atmosphere. By analysing Hall mobility with respect to carrier density, temperature, or film thickness using our model, a better understanding of the limiting mechanisms in electron mobility can be achieved. This knowledge can guide the development of appropriate experimental strategies to enhance electron mobility in highly doped polycrystalline SnO 2 films for advancing the performance of SnO 2 -based devices across various applications.\",\"PeriodicalId\":56371,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":\"117 19\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad08a0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad08a0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文对高掺杂多晶sno2薄膜的电子迁移率进行了全面的理论研究,这是一种在现代器件中广泛应用的材料。我们的物理模型将声子-电子相互作用、电离杂质和晶界作为散射机制,有效地解释了掺杂多晶SnO 2薄膜中电子迁移率的温度和电子密度相关变化。我们强调了晶界陷阱密度、自补偿效应和平均晶粒尺寸对电子迁移率理论极限的显著影响。当掺杂量为10 19 cm−3时,其极限估计为100 cm 2 . v−1 .s−1,而当掺杂量为10 20 cm−3时,其极限估计为50 cm 2 . v−1 .s−1。这些因素受到沉积条件的强烈影响,包括温度、前驱体化学和沉积气氛。通过使用我们的模型分析霍尔迁移率与载流子密度、温度或薄膜厚度的关系,可以更好地理解电子迁移率的限制机制。这些知识可以指导适当的实验策略的发展,以提高高掺杂多晶SnO 2薄膜中的电子迁移率,从而提高SnO基器件在各种应用中的性能。
Unraveling the limiting factors to electron mobility in degenerately doped SnO2 thin films
Abstract This paper presents a comprehensive theoretical study on electron mobility in highly doped polycrystalline SnO 2 thin films, a widely employed material in modern devices. Our physical model incorporates phonon-electron interaction, ionised impurity, and grain boundaries as scattering mechanisms, effectively explaining the temperature and electron density-dependent variation of electron mobility in doped polycrystalline SnO 2 thin films. We highlight the significant influence of trap density at grain boundaries, the self-compensation effect, and average grain size on the theoretical limit of electron mobility. At a doping level of 10 19 cm −3 , the limit is estimated at 100 cm 2 .V −1 .s −1 , while for 10 20 cm −3 , it reduces to 50 cm 2 .V −1 .s −1 . These factors are strongly influenced by deposition conditions, including temperature, precursor chemistry, and deposition atmosphere. By analysing Hall mobility with respect to carrier density, temperature, or film thickness using our model, a better understanding of the limiting mechanisms in electron mobility can be achieved. This knowledge can guide the development of appropriate experimental strategies to enhance electron mobility in highly doped polycrystalline SnO 2 films for advancing the performance of SnO 2 -based devices across various applications.