揭示简并掺杂SnO2薄膜中电子迁移率的限制因素

Viet Huong Nguyen, Hang Tran Thi My, Huong T.T. Ta, Kha Anh Vuong, Hoai Hue Nguyen, Thien Thanh Nguyen, Ngoc Linh Nguyen, Hao Van Bui
{"title":"揭示简并掺杂SnO2薄膜中电子迁移率的限制因素","authors":"Viet Huong Nguyen, Hang Tran Thi My, Huong T.T. Ta, Kha Anh Vuong, Hoai Hue Nguyen, Thien Thanh Nguyen, Ngoc Linh Nguyen, Hao Van Bui","doi":"10.1088/2043-6262/ad08a0","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a comprehensive theoretical study on electron mobility in highly doped polycrystalline SnO 2 thin films, a widely employed material in modern devices. Our physical model incorporates phonon-electron interaction, ionised impurity, and grain boundaries as scattering mechanisms, effectively explaining the temperature and electron density-dependent variation of electron mobility in doped polycrystalline SnO 2 thin films. We highlight the significant influence of trap density at grain boundaries, the self-compensation effect, and average grain size on the theoretical limit of electron mobility. At a doping level of 10 19 cm −3 , the limit is estimated at 100 cm 2 .V −1 .s −1 , while for 10 20 cm −3 , it reduces to 50 cm 2 .V −1 .s −1 . These factors are strongly influenced by deposition conditions, including temperature, precursor chemistry, and deposition atmosphere. By analysing Hall mobility with respect to carrier density, temperature, or film thickness using our model, a better understanding of the limiting mechanisms in electron mobility can be achieved. This knowledge can guide the development of appropriate experimental strategies to enhance electron mobility in highly doped polycrystalline SnO 2 films for advancing the performance of SnO 2 -based devices across various applications.","PeriodicalId":56371,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"117 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the limiting factors to electron mobility in degenerately doped SnO<sub>2</sub> thin films\",\"authors\":\"Viet Huong Nguyen, Hang Tran Thi My, Huong T.T. Ta, Kha Anh Vuong, Hoai Hue Nguyen, Thien Thanh Nguyen, Ngoc Linh Nguyen, Hao Van Bui\",\"doi\":\"10.1088/2043-6262/ad08a0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a comprehensive theoretical study on electron mobility in highly doped polycrystalline SnO 2 thin films, a widely employed material in modern devices. Our physical model incorporates phonon-electron interaction, ionised impurity, and grain boundaries as scattering mechanisms, effectively explaining the temperature and electron density-dependent variation of electron mobility in doped polycrystalline SnO 2 thin films. We highlight the significant influence of trap density at grain boundaries, the self-compensation effect, and average grain size on the theoretical limit of electron mobility. At a doping level of 10 19 cm −3 , the limit is estimated at 100 cm 2 .V −1 .s −1 , while for 10 20 cm −3 , it reduces to 50 cm 2 .V −1 .s −1 . These factors are strongly influenced by deposition conditions, including temperature, precursor chemistry, and deposition atmosphere. By analysing Hall mobility with respect to carrier density, temperature, or film thickness using our model, a better understanding of the limiting mechanisms in electron mobility can be achieved. This knowledge can guide the development of appropriate experimental strategies to enhance electron mobility in highly doped polycrystalline SnO 2 films for advancing the performance of SnO 2 -based devices across various applications.\",\"PeriodicalId\":56371,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":\"117 19\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad08a0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad08a0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文对高掺杂多晶sno2薄膜的电子迁移率进行了全面的理论研究,这是一种在现代器件中广泛应用的材料。我们的物理模型将声子-电子相互作用、电离杂质和晶界作为散射机制,有效地解释了掺杂多晶SnO 2薄膜中电子迁移率的温度和电子密度相关变化。我们强调了晶界陷阱密度、自补偿效应和平均晶粒尺寸对电子迁移率理论极限的显著影响。当掺杂量为10 19 cm−3时,其极限估计为100 cm 2 . v−1 .s−1,而当掺杂量为10 20 cm−3时,其极限估计为50 cm 2 . v−1 .s−1。这些因素受到沉积条件的强烈影响,包括温度、前驱体化学和沉积气氛。通过使用我们的模型分析霍尔迁移率与载流子密度、温度或薄膜厚度的关系,可以更好地理解电子迁移率的限制机制。这些知识可以指导适当的实验策略的发展,以提高高掺杂多晶SnO 2薄膜中的电子迁移率,从而提高SnO基器件在各种应用中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling the limiting factors to electron mobility in degenerately doped SnO2 thin films
Abstract This paper presents a comprehensive theoretical study on electron mobility in highly doped polycrystalline SnO 2 thin films, a widely employed material in modern devices. Our physical model incorporates phonon-electron interaction, ionised impurity, and grain boundaries as scattering mechanisms, effectively explaining the temperature and electron density-dependent variation of electron mobility in doped polycrystalline SnO 2 thin films. We highlight the significant influence of trap density at grain boundaries, the self-compensation effect, and average grain size on the theoretical limit of electron mobility. At a doping level of 10 19 cm −3 , the limit is estimated at 100 cm 2 .V −1 .s −1 , while for 10 20 cm −3 , it reduces to 50 cm 2 .V −1 .s −1 . These factors are strongly influenced by deposition conditions, including temperature, precursor chemistry, and deposition atmosphere. By analysing Hall mobility with respect to carrier density, temperature, or film thickness using our model, a better understanding of the limiting mechanisms in electron mobility can be achieved. This knowledge can guide the development of appropriate experimental strategies to enhance electron mobility in highly doped polycrystalline SnO 2 films for advancing the performance of SnO 2 -based devices across various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology Engineering-Industrial and Manufacturing Engineering
CiteScore
3.80
自引率
0.00%
发文量
60
期刊最新文献
Fe3O4/CoFe2O4 core-shell nanoparticles with enhanced magnetic properties for hyperthermia application Palladium/coconut husk biochar composite material as an effective electrocatalyst for ethanol oxidation reaction Effect of biosynthesised silver nanoparticles as sterilant on physiological and biochemical characteristics in micropropagation of Musa sapientum L. Facile synthesis of co-axially electrospun Co-C nanofibers and their ferromagnetic behavior New insights into the role of nanotechnology in Bifidobacterium biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1