{"title":"阿富汗东部查里卡尔极端洪水事件的案例研究","authors":"Farahnaz Fazel-Rastgar, Venkataraman Sivakumar","doi":"10.2166/wcc.2023.462","DOIUrl":null,"url":null,"abstract":"Abstract This work investigates the meteorological mechanisms forming a classical frontal system on 26 August 2020 in the northeast and eastern parts of Afghanistan. The weather system caused heavy rainfall and led to severe flash floods. Flooding, affected by torrential rain showers, struck mostly the city of Charikar in Parvan province early in the morning day, while most people were asleep. This caused 150 deaths, and nearly 500 houses were destroyed. This research explores atmospheric processes by examining the National Centers for Environmental Prediction dataset and MERRA Model database. The calculation of the convective available potential energy (CAPE) and Showalter index extracted from the Skew-T log-pressure diagram shows a high value of the CAPE at around 2,632 J/kg and −6.6 for the Showalter index, respectively. This presents a very extreme instability in the study area during the time of the flood. The study reveals that the triggering of this system was mostly by thermodynamical aspects, low-level deep convergence, and local topographical aspects rather than the PV streamer. However, the anomaly climate analysis for different atmospheric elements with a comparison of the climate normal values shows the importance of climate change in the weather system into a stronger frontal activity associated with stronger baroclinicity over the study area.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"12 11","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A case study of an extreme flooding episode in Charikar, Eastern Afghanistan\",\"authors\":\"Farahnaz Fazel-Rastgar, Venkataraman Sivakumar\",\"doi\":\"10.2166/wcc.2023.462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work investigates the meteorological mechanisms forming a classical frontal system on 26 August 2020 in the northeast and eastern parts of Afghanistan. The weather system caused heavy rainfall and led to severe flash floods. Flooding, affected by torrential rain showers, struck mostly the city of Charikar in Parvan province early in the morning day, while most people were asleep. This caused 150 deaths, and nearly 500 houses were destroyed. This research explores atmospheric processes by examining the National Centers for Environmental Prediction dataset and MERRA Model database. The calculation of the convective available potential energy (CAPE) and Showalter index extracted from the Skew-T log-pressure diagram shows a high value of the CAPE at around 2,632 J/kg and −6.6 for the Showalter index, respectively. This presents a very extreme instability in the study area during the time of the flood. The study reveals that the triggering of this system was mostly by thermodynamical aspects, low-level deep convergence, and local topographical aspects rather than the PV streamer. However, the anomaly climate analysis for different atmospheric elements with a comparison of the climate normal values shows the importance of climate change in the weather system into a stronger frontal activity associated with stronger baroclinicity over the study area.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"12 11\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.462\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.462","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
A case study of an extreme flooding episode in Charikar, Eastern Afghanistan
Abstract This work investigates the meteorological mechanisms forming a classical frontal system on 26 August 2020 in the northeast and eastern parts of Afghanistan. The weather system caused heavy rainfall and led to severe flash floods. Flooding, affected by torrential rain showers, struck mostly the city of Charikar in Parvan province early in the morning day, while most people were asleep. This caused 150 deaths, and nearly 500 houses were destroyed. This research explores atmospheric processes by examining the National Centers for Environmental Prediction dataset and MERRA Model database. The calculation of the convective available potential energy (CAPE) and Showalter index extracted from the Skew-T log-pressure diagram shows a high value of the CAPE at around 2,632 J/kg and −6.6 for the Showalter index, respectively. This presents a very extreme instability in the study area during the time of the flood. The study reveals that the triggering of this system was mostly by thermodynamical aspects, low-level deep convergence, and local topographical aspects rather than the PV streamer. However, the anomaly climate analysis for different atmospheric elements with a comparison of the climate normal values shows the importance of climate change in the weather system into a stronger frontal activity associated with stronger baroclinicity over the study area.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.