Mufei Xiao, Vitalii Petranovskii, Armando Reyes-Serrato, Joel Antúnez-García, Jesús L. A. Ponce-Ruiz, Constanza I. Koop-Santa, Fabian N. Murrieta-Rico, Rosario I. Yocupicio-Gaxiola, Jonathan Zamora-Mendieta, Nikifor Rakov
{"title":"沸石材料中金属颗粒团簇的集体等离子体共振","authors":"Mufei Xiao, Vitalii Petranovskii, Armando Reyes-Serrato, Joel Antúnez-García, Jesús L. A. Ponce-Ruiz, Constanza I. Koop-Santa, Fabian N. Murrieta-Rico, Rosario I. Yocupicio-Gaxiola, Jonathan Zamora-Mendieta, Nikifor Rakov","doi":"10.35702/catalres.10012","DOIUrl":null,"url":null,"abstract":"INTRODUCTION Zeolites are crystalline microporous aluminosilicates that have found wide-ranging industrial applications in catalysis [1-3], as well as in other processes [4,5]. The main feature that fundamentally distinguishes them from other carriers is a system of voids strictly ordered in shape and size, which are an element of their crystalline structure. Catalysts are materials that allow important reactions to be more selective, faster, and require less energy. Coinage metals (copper, silver, and gold) possess noteworthy optical and electrical properties, are often found as important components in most catalysts, and are known for their high activity as well as many other important properties. Nanoclusters of these metals are widely used in biomedical imaging, remote sensing, labeling, etc. Coinage metal nanostructures possess noteworthy optical, and electrical properties, that are inspiring serious research toward the design and synthesis for potential application in areas such as antibacterial activity, surface-enhanced Raman scattering (SERS)-based detection, and electrochemical sensing. The most recent developments deal with their antiviral applications [6]. Historically, Cu, Ag, and Au have been well-known for their oligodynamic efficacy, antiviral action as well as good biocompatibility, binding receptor inhibition, formation of reactive oxygen species, and phototherapy properties. Thus, a study was conducted to investigate the diagnostic and therapeutic mechanisms of the antivirus ability and mode of action of coinage metals on SARS-CoV-2. This article [6] also draws attention to coinage metal nanomaterial-based approaches to the treatment of other contagious viruses.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective Plasmonic Resonances of Metallic Particle Clusters in Zeolite Materials\",\"authors\":\"Mufei Xiao, Vitalii Petranovskii, Armando Reyes-Serrato, Joel Antúnez-García, Jesús L. A. Ponce-Ruiz, Constanza I. Koop-Santa, Fabian N. Murrieta-Rico, Rosario I. Yocupicio-Gaxiola, Jonathan Zamora-Mendieta, Nikifor Rakov\",\"doi\":\"10.35702/catalres.10012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION Zeolites are crystalline microporous aluminosilicates that have found wide-ranging industrial applications in catalysis [1-3], as well as in other processes [4,5]. The main feature that fundamentally distinguishes them from other carriers is a system of voids strictly ordered in shape and size, which are an element of their crystalline structure. Catalysts are materials that allow important reactions to be more selective, faster, and require less energy. Coinage metals (copper, silver, and gold) possess noteworthy optical and electrical properties, are often found as important components in most catalysts, and are known for their high activity as well as many other important properties. Nanoclusters of these metals are widely used in biomedical imaging, remote sensing, labeling, etc. Coinage metal nanostructures possess noteworthy optical, and electrical properties, that are inspiring serious research toward the design and synthesis for potential application in areas such as antibacterial activity, surface-enhanced Raman scattering (SERS)-based detection, and electrochemical sensing. The most recent developments deal with their antiviral applications [6]. Historically, Cu, Ag, and Au have been well-known for their oligodynamic efficacy, antiviral action as well as good biocompatibility, binding receptor inhibition, formation of reactive oxygen species, and phototherapy properties. Thus, a study was conducted to investigate the diagnostic and therapeutic mechanisms of the antivirus ability and mode of action of coinage metals on SARS-CoV-2. This article [6] also draws attention to coinage metal nanomaterial-based approaches to the treatment of other contagious viruses.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35702/catalres.10012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35702/catalres.10012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collective Plasmonic Resonances of Metallic Particle Clusters in Zeolite Materials
INTRODUCTION Zeolites are crystalline microporous aluminosilicates that have found wide-ranging industrial applications in catalysis [1-3], as well as in other processes [4,5]. The main feature that fundamentally distinguishes them from other carriers is a system of voids strictly ordered in shape and size, which are an element of their crystalline structure. Catalysts are materials that allow important reactions to be more selective, faster, and require less energy. Coinage metals (copper, silver, and gold) possess noteworthy optical and electrical properties, are often found as important components in most catalysts, and are known for their high activity as well as many other important properties. Nanoclusters of these metals are widely used in biomedical imaging, remote sensing, labeling, etc. Coinage metal nanostructures possess noteworthy optical, and electrical properties, that are inspiring serious research toward the design and synthesis for potential application in areas such as antibacterial activity, surface-enhanced Raman scattering (SERS)-based detection, and electrochemical sensing. The most recent developments deal with their antiviral applications [6]. Historically, Cu, Ag, and Au have been well-known for their oligodynamic efficacy, antiviral action as well as good biocompatibility, binding receptor inhibition, formation of reactive oxygen species, and phototherapy properties. Thus, a study was conducted to investigate the diagnostic and therapeutic mechanisms of the antivirus ability and mode of action of coinage metals on SARS-CoV-2. This article [6] also draws attention to coinage metal nanomaterial-based approaches to the treatment of other contagious viruses.