{"title":"在相关故障时间存在测量误差的情况下,对生存函数进行非参数估计","authors":"Shaojia Jin, Yanyan Liu, Guangcai Mao, Jianguo Sun, Yuanshan Wu","doi":"10.1002/cjs.11799","DOIUrl":null,"url":null,"abstract":"<p>This article discusses nonparametric estimation of a survival function in the presence of measurement errors on the observation of the failure time of interest. One situation where such issues arise would be clinical studies of chronic diseases where the observation on the time to the failure event of interest such as the onset of the disease relies on patient recall or chart review of electronic medical records. It is easy to see that both situations can be subject to measurement errors. To resolve this problem, we propose a simulation extrapolation approach to correct the bias induced by the measurement error. To overcome potential computational difficulties, we use spline regression to approximate the unspecified extrapolated coefficient function of time, and establish the asymptotic properties of our proposed estimator. The proposed method is applied to nonparametric estimation based on interval-censored data. Extensive numerical experiments involving both simulated and actual study datasets demonstrate the feasibility of this proposed estimation procedure.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 3","pages":"783-803"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of a survival function in the presence of measurement errors on the failure time of interest\",\"authors\":\"Shaojia Jin, Yanyan Liu, Guangcai Mao, Jianguo Sun, Yuanshan Wu\",\"doi\":\"10.1002/cjs.11799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article discusses nonparametric estimation of a survival function in the presence of measurement errors on the observation of the failure time of interest. One situation where such issues arise would be clinical studies of chronic diseases where the observation on the time to the failure event of interest such as the onset of the disease relies on patient recall or chart review of electronic medical records. It is easy to see that both situations can be subject to measurement errors. To resolve this problem, we propose a simulation extrapolation approach to correct the bias induced by the measurement error. To overcome potential computational difficulties, we use spline regression to approximate the unspecified extrapolated coefficient function of time, and establish the asymptotic properties of our proposed estimator. The proposed method is applied to nonparametric estimation based on interval-censored data. Extensive numerical experiments involving both simulated and actual study datasets demonstrate the feasibility of this proposed estimation procedure.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 3\",\"pages\":\"783-803\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11799\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11799","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric estimation of a survival function in the presence of measurement errors on the failure time of interest
This article discusses nonparametric estimation of a survival function in the presence of measurement errors on the observation of the failure time of interest. One situation where such issues arise would be clinical studies of chronic diseases where the observation on the time to the failure event of interest such as the onset of the disease relies on patient recall or chart review of electronic medical records. It is easy to see that both situations can be subject to measurement errors. To resolve this problem, we propose a simulation extrapolation approach to correct the bias induced by the measurement error. To overcome potential computational difficulties, we use spline regression to approximate the unspecified extrapolated coefficient function of time, and establish the asymptotic properties of our proposed estimator. The proposed method is applied to nonparametric estimation based on interval-censored data. Extensive numerical experiments involving both simulated and actual study datasets demonstrate the feasibility of this proposed estimation procedure.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.