基于自我-头部姿态估计的自我-身体姿态估计

AI matters Pub Date : 2023-06-01 DOI:10.1145/3609468.3609473
Jiaman Li, C. Karen Liu, Jiajun Wu
{"title":"基于自我-头部姿态估计的自我-身体姿态估计","authors":"Jiaman Li, C. Karen Liu, Jiajun Wu","doi":"10.1145/3609468.3609473","DOIUrl":null,"url":null,"abstract":"Estimating 3D human motion from an ego-centric video, which records the environment viewed from the first-person perspective with a front-facing monocular camera, is critical to applications in VR/AR. However, naively learning a mapping between egocentric videos and full-body human motions is challenging for two reasons. First, modeling this complex relationship is difficult; unlike reconstruction motion from third-person videos, the human body is often out of view of an egocentric video. Second, learning this mapping requires a large-scale, diverse dataset containing paired egocentric videos and the corresponding 3D human poses. Creating such a dataset requires meticulous instrumentation for data acquisition, and unfortunately, such a dataset does not currently exist. As such, existing works have only worked on small-scale datasets with limited motion and scene diversity (yuan20183d; yuan2019ego; luo2021dynamics).","PeriodicalId":91445,"journal":{"name":"AI matters","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ego-Body Pose Estimation via Ego-Head Pose Estimation\",\"authors\":\"Jiaman Li, C. Karen Liu, Jiajun Wu\",\"doi\":\"10.1145/3609468.3609473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating 3D human motion from an ego-centric video, which records the environment viewed from the first-person perspective with a front-facing monocular camera, is critical to applications in VR/AR. However, naively learning a mapping between egocentric videos and full-body human motions is challenging for two reasons. First, modeling this complex relationship is difficult; unlike reconstruction motion from third-person videos, the human body is often out of view of an egocentric video. Second, learning this mapping requires a large-scale, diverse dataset containing paired egocentric videos and the corresponding 3D human poses. Creating such a dataset requires meticulous instrumentation for data acquisition, and unfortunately, such a dataset does not currently exist. As such, existing works have only worked on small-scale datasets with limited motion and scene diversity (yuan20183d; yuan2019ego; luo2021dynamics).\",\"PeriodicalId\":91445,\"journal\":{\"name\":\"AI matters\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI matters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609468.3609473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI matters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609468.3609473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从以自我为中心的视频中估计3D人体运动对VR/AR的应用至关重要,该视频使用前置单目摄像头从第一人称视角记录环境。然而,天真地学习自我中心视频和人体全身运动之间的映射是具有挑战性的,原因有两个。首先,这种复杂关系的建模是困难的;与第三人称视频的重建运动不同,以自我为中心的视频往往看不到人体。其次,学习这种映射需要一个大规模的、多样化的数据集,其中包含成对的以自我为中心的视频和相应的3D人体姿势。创建这样的数据集需要细致的数据采集仪器,不幸的是,目前还不存在这样的数据集。因此,现有的作品只适用于运动和场景多样性有限的小规模数据集(yuan20183d;yuan2019ego;luo2021dynamics)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ego-Body Pose Estimation via Ego-Head Pose Estimation
Estimating 3D human motion from an ego-centric video, which records the environment viewed from the first-person perspective with a front-facing monocular camera, is critical to applications in VR/AR. However, naively learning a mapping between egocentric videos and full-body human motions is challenging for two reasons. First, modeling this complex relationship is difficult; unlike reconstruction motion from third-person videos, the human body is often out of view of an egocentric video. Second, learning this mapping requires a large-scale, diverse dataset containing paired egocentric videos and the corresponding 3D human poses. Creating such a dataset requires meticulous instrumentation for data acquisition, and unfortunately, such a dataset does not currently exist. As such, existing works have only worked on small-scale datasets with limited motion and scene diversity (yuan20183d; yuan2019ego; luo2021dynamics).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conference Reports Welcome to AI Matters 9(3) AI Policy Matters SIGAI Annual Report: July 1 2022 --- August 30 2023 Conference Reports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1