基于深度强化学习和数值优化方法的可再生能源微电网控制

Anastasia Yu. Zhadan, Haitao Wu, Pavel S. Kudin, Yuyi Zhang, Ovanes L. Petrosian
{"title":"基于深度强化学习和数值优化方法的可再生能源微电网控制","authors":"Anastasia Yu. Zhadan, Haitao Wu, Pavel S. Kudin, Yuyi Zhang, Ovanes L. Petrosian","doi":"10.21638/11701/spbu10.2023.307","DOIUrl":null,"url":null,"abstract":"Optimal scheduling of battery energy storage system plays crucial part in dis- tributed energy system. As a data driven method, deep reinforcement learning does not require system knowledge of dynamic system, present optimal solution for nonlinear optimization problem. In this research, financial cost of energy con- sumption reduced by scheduling battery energy using deep reinforcement learning method (RL). Reinforcement learning can adapt to equipment parameter changes and noise in the data, while mixed-integer linear programming (MILP) requires high accuracy in forecasting power generation and demand, accurate equipment parameters to achieve good performance, and high computational cost for large- scale industrial applications. Based on this, it can be assumed that deep RL based solution is capable of outperform classic deterministic optimization model MILP. This study compares four state-of-the-art RL algorithms for the battery power plant control problem: PPO, A2C, SAC, TD3. According to the simulation results, TD3 shows the best results, outperforming MILP by 5% in cost savings, and the time to solve the problem is reduced by about a factor of three.","PeriodicalId":477285,"journal":{"name":"Вестник Санкт-Петербургского университета","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches\",\"authors\":\"Anastasia Yu. Zhadan, Haitao Wu, Pavel S. Kudin, Yuyi Zhang, Ovanes L. Petrosian\",\"doi\":\"10.21638/11701/spbu10.2023.307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal scheduling of battery energy storage system plays crucial part in dis- tributed energy system. As a data driven method, deep reinforcement learning does not require system knowledge of dynamic system, present optimal solution for nonlinear optimization problem. In this research, financial cost of energy con- sumption reduced by scheduling battery energy using deep reinforcement learning method (RL). Reinforcement learning can adapt to equipment parameter changes and noise in the data, while mixed-integer linear programming (MILP) requires high accuracy in forecasting power generation and demand, accurate equipment parameters to achieve good performance, and high computational cost for large- scale industrial applications. Based on this, it can be assumed that deep RL based solution is capable of outperform classic deterministic optimization model MILP. This study compares four state-of-the-art RL algorithms for the battery power plant control problem: PPO, A2C, SAC, TD3. According to the simulation results, TD3 shows the best results, outperforming MILP by 5% in cost savings, and the time to solve the problem is reduced by about a factor of three.\",\"PeriodicalId\":477285,\"journal\":{\"name\":\"Вестник Санкт-Петербургского университета\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Вестник Санкт-Петербургского университета\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2023.307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Вестник Санкт-Петербургского университета","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2023.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电池储能系统的优化调度在分布式能源系统中起着至关重要的作用。作为一种数据驱动的方法,深度强化学习不需要动态系统的系统知识,为非线性优化问题提供最优解。在本研究中,采用深度强化学习方法(RL)对电池能量进行调度,降低了能源消耗的财务成本。强化学习可以适应设备参数变化和数据中的噪声,而混合整数线性规划(MILP)对发电量和需求的预测精度要求高,对设备参数的准确性要求高,以达到良好的性能,对大规模工业应用的计算成本要求高。基于此,可以假设基于深度强化学习的解决方案能够优于经典的确定性优化模型MILP。本研究比较了电池电厂控制问题的四种最先进的RL算法:PPO, A2C, SAC, TD3。根据仿真结果,TD3显示出最好的结果,在节省成本方面比MILP高出5%,并且解决问题的时间减少了大约三分之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches
Optimal scheduling of battery energy storage system plays crucial part in dis- tributed energy system. As a data driven method, deep reinforcement learning does not require system knowledge of dynamic system, present optimal solution for nonlinear optimization problem. In this research, financial cost of energy con- sumption reduced by scheduling battery energy using deep reinforcement learning method (RL). Reinforcement learning can adapt to equipment parameter changes and noise in the data, while mixed-integer linear programming (MILP) requires high accuracy in forecasting power generation and demand, accurate equipment parameters to achieve good performance, and high computational cost for large- scale industrial applications. Based on this, it can be assumed that deep RL based solution is capable of outperform classic deterministic optimization model MILP. This study compares four state-of-the-art RL algorithms for the battery power plant control problem: PPO, A2C, SAC, TD3. According to the simulation results, TD3 shows the best results, outperforming MILP by 5% in cost savings, and the time to solve the problem is reduced by about a factor of three.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of the implicit Euler method for the discretization of some classes of nonlinear systems Theoretical foundation for solving search problems by the method of maximum entropy Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment Examining the possibility of insurance contract conclusion based on utility function Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1