{"title":"对流大气极端降雨事件的浅层和深度学习","authors":"Gerd Bürger, Maik Heistermann","doi":"10.5194/nhess-23-3065-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify daily ERA5 fields of convective indices according to CatRaRE, using an array of 13 statistical methods, consisting of 4 conventional (“shallow”) and 9 more recent deep machine learning (DL) algorithms; the classifiers are then applied to corresponding fields of simulated present and future atmospheres from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. The inherent uncertainty of the DL results from the stochastic nature of their optimization is addressed by employing an ensemble approach using 20 runs for each network. The shallow random forest method performs best with an equitable threat score (ETS) around 0.52, followed by the DL networks ALL-CNN and ResNet with an ETS near 0.48. Their success can be understood as a result of conceptual simplicity and parametric parsimony, which obviously best fits the relatively simple classification task. It is found that, on summer days, CatRaRE-convective atmospheres over Germany occur with a probability of about 0.5. This probability is projected to increase, regardless of method, both in ERA5-reanalyzed and CORDEX-simulated atmospheres: for the historical period we find a centennial increase of about 0.2 and for the future period one of slightly below 0.1.","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"187 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shallow and deep learning of extreme rainfall events from convective atmospheres\",\"authors\":\"Gerd Bürger, Maik Heistermann\",\"doi\":\"10.5194/nhess-23-3065-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify daily ERA5 fields of convective indices according to CatRaRE, using an array of 13 statistical methods, consisting of 4 conventional (“shallow”) and 9 more recent deep machine learning (DL) algorithms; the classifiers are then applied to corresponding fields of simulated present and future atmospheres from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. The inherent uncertainty of the DL results from the stochastic nature of their optimization is addressed by employing an ensemble approach using 20 runs for each network. The shallow random forest method performs best with an equitable threat score (ETS) around 0.52, followed by the DL networks ALL-CNN and ResNet with an ETS near 0.48. Their success can be understood as a result of conceptual simplicity and parametric parsimony, which obviously best fits the relatively simple classification task. It is found that, on summer days, CatRaRE-convective atmospheres over Germany occur with a probability of about 0.5. This probability is projected to increase, regardless of method, both in ERA5-reanalyzed and CORDEX-simulated atmospheres: for the historical period we find a centennial increase of about 0.2 and for the future period one of slightly below 0.1.\",\"PeriodicalId\":18922,\"journal\":{\"name\":\"Natural Hazards and Earth System Sciences\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards and Earth System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/nhess-23-3065-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/nhess-23-3065-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Shallow and deep learning of extreme rainfall events from convective atmospheres
Abstract. Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify daily ERA5 fields of convective indices according to CatRaRE, using an array of 13 statistical methods, consisting of 4 conventional (“shallow”) and 9 more recent deep machine learning (DL) algorithms; the classifiers are then applied to corresponding fields of simulated present and future atmospheres from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. The inherent uncertainty of the DL results from the stochastic nature of their optimization is addressed by employing an ensemble approach using 20 runs for each network. The shallow random forest method performs best with an equitable threat score (ETS) around 0.52, followed by the DL networks ALL-CNN and ResNet with an ETS near 0.48. Their success can be understood as a result of conceptual simplicity and parametric parsimony, which obviously best fits the relatively simple classification task. It is found that, on summer days, CatRaRE-convective atmospheres over Germany occur with a probability of about 0.5. This probability is projected to increase, regardless of method, both in ERA5-reanalyzed and CORDEX-simulated atmospheres: for the historical period we find a centennial increase of about 0.2 and for the future period one of slightly below 0.1.
期刊介绍:
Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.