Fuqiang Zhang, Fengli Xu, Xueliang Zhou, Kai Ding, Shujun Shao, Chao Du, Jiewu Leng
{"title":"数据驱动和知识指导的铣刀寿命等级预测模型","authors":"Fuqiang Zhang, Fengli Xu, Xueliang Zhou, Kai Ding, Shujun Shao, Chao Du, Jiewu Leng","doi":"10.1080/0951192x.2023.2257620","DOIUrl":null,"url":null,"abstract":"ABSTRACTModels that predict tool life based on wear mechanism knowledge are typically inaccurate, as the use of simplified model parameters can have a significant effect on this prediction. While a tool life prediction model based on sample cutting data is limited to specific working conditions, which makes tool life prediction difficult to generalize, and needs a large amount of historical data as support. In this paper, the empirical formula of tool life based on wear mechanism knowledge was combined with a neural network, which can significantly improve prediction accuracy. Firstly, a concept of tool life grade is proposed, and its classification standard is outlined. Secondly, a prediction model based on the empirical life formula and experimental data was established. Thirdly, a tool wear prediction model based on a convolutional neural network (CNN) was established through the real-time tool condition data, and the corresponding life compensation strategy can be determined by comparing this with the historical data. Finally, the empirical life grade was adjusted to obtain the real-time tool life grade. A case example shows that the data-driven knowledge-guided prediction model can significantly improve the recognition accuracy of tool life grade.KEYWORDS: Milling tool life gradewear mechanism knowledgecondition dataconvolutional neural networkreal time prediction AcknowledgementsThis work was supported in part by the National Key R&D Program of China (2021YFB3301702), Major Special Science and Technology Project of Shaanxi Province, China (No.2018zdzx01-01-01), and the Natural Science Foundation of Shaanxi Province, China (No. 2021JM-173).Disclosure statementNo potential conflict of interest was reported by the authors.Contribution StatementFuqiang Zhang provided the research idea; Fengli Xu wrote the paper and developed a software testing system; Xueliang Zhou and Jiew Leng conducted review and editing; Kai Ding provided the funding acquisition; Shujun Shao and Chao Du provided the data set.Additional informationFundingThe work was supported by the National Key R&D Program of China [2021YFB3301702]; Natural Science Foundation of Shaanxi Province, China [2021JM-173]; Major Special Science and Technology Project of Shaanxi Province, China [2018zdzx01-01-01].","PeriodicalId":13907,"journal":{"name":"International Journal of Computer Integrated Manufacturing","volume":"121 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<sup>Data-</sup> <sup>driven</sup> <sup>and</sup> <sup>knowledge-</sup> <sup>guided prediction model of milling tool life</sup> <sup>grade</sup>\",\"authors\":\"Fuqiang Zhang, Fengli Xu, Xueliang Zhou, Kai Ding, Shujun Shao, Chao Du, Jiewu Leng\",\"doi\":\"10.1080/0951192x.2023.2257620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTModels that predict tool life based on wear mechanism knowledge are typically inaccurate, as the use of simplified model parameters can have a significant effect on this prediction. While a tool life prediction model based on sample cutting data is limited to specific working conditions, which makes tool life prediction difficult to generalize, and needs a large amount of historical data as support. In this paper, the empirical formula of tool life based on wear mechanism knowledge was combined with a neural network, which can significantly improve prediction accuracy. Firstly, a concept of tool life grade is proposed, and its classification standard is outlined. Secondly, a prediction model based on the empirical life formula and experimental data was established. Thirdly, a tool wear prediction model based on a convolutional neural network (CNN) was established through the real-time tool condition data, and the corresponding life compensation strategy can be determined by comparing this with the historical data. Finally, the empirical life grade was adjusted to obtain the real-time tool life grade. A case example shows that the data-driven knowledge-guided prediction model can significantly improve the recognition accuracy of tool life grade.KEYWORDS: Milling tool life gradewear mechanism knowledgecondition dataconvolutional neural networkreal time prediction AcknowledgementsThis work was supported in part by the National Key R&D Program of China (2021YFB3301702), Major Special Science and Technology Project of Shaanxi Province, China (No.2018zdzx01-01-01), and the Natural Science Foundation of Shaanxi Province, China (No. 2021JM-173).Disclosure statementNo potential conflict of interest was reported by the authors.Contribution StatementFuqiang Zhang provided the research idea; Fengli Xu wrote the paper and developed a software testing system; Xueliang Zhou and Jiew Leng conducted review and editing; Kai Ding provided the funding acquisition; Shujun Shao and Chao Du provided the data set.Additional informationFundingThe work was supported by the National Key R&D Program of China [2021YFB3301702]; Natural Science Foundation of Shaanxi Province, China [2021JM-173]; Major Special Science and Technology Project of Shaanxi Province, China [2018zdzx01-01-01].\",\"PeriodicalId\":13907,\"journal\":{\"name\":\"International Journal of Computer Integrated Manufacturing\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Integrated Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0951192x.2023.2257620\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Integrated Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0951192x.2023.2257620","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Data-drivenandknowledge-guided prediction model of milling tool lifegrade
ABSTRACTModels that predict tool life based on wear mechanism knowledge are typically inaccurate, as the use of simplified model parameters can have a significant effect on this prediction. While a tool life prediction model based on sample cutting data is limited to specific working conditions, which makes tool life prediction difficult to generalize, and needs a large amount of historical data as support. In this paper, the empirical formula of tool life based on wear mechanism knowledge was combined with a neural network, which can significantly improve prediction accuracy. Firstly, a concept of tool life grade is proposed, and its classification standard is outlined. Secondly, a prediction model based on the empirical life formula and experimental data was established. Thirdly, a tool wear prediction model based on a convolutional neural network (CNN) was established through the real-time tool condition data, and the corresponding life compensation strategy can be determined by comparing this with the historical data. Finally, the empirical life grade was adjusted to obtain the real-time tool life grade. A case example shows that the data-driven knowledge-guided prediction model can significantly improve the recognition accuracy of tool life grade.KEYWORDS: Milling tool life gradewear mechanism knowledgecondition dataconvolutional neural networkreal time prediction AcknowledgementsThis work was supported in part by the National Key R&D Program of China (2021YFB3301702), Major Special Science and Technology Project of Shaanxi Province, China (No.2018zdzx01-01-01), and the Natural Science Foundation of Shaanxi Province, China (No. 2021JM-173).Disclosure statementNo potential conflict of interest was reported by the authors.Contribution StatementFuqiang Zhang provided the research idea; Fengli Xu wrote the paper and developed a software testing system; Xueliang Zhou and Jiew Leng conducted review and editing; Kai Ding provided the funding acquisition; Shujun Shao and Chao Du provided the data set.Additional informationFundingThe work was supported by the National Key R&D Program of China [2021YFB3301702]; Natural Science Foundation of Shaanxi Province, China [2021JM-173]; Major Special Science and Technology Project of Shaanxi Province, China [2018zdzx01-01-01].
期刊介绍:
International Journal of Computer Integrated Manufacturing (IJCIM) reports new research in theory and applications of computer integrated manufacturing. The scope spans mechanical and manufacturing engineering, software and computer engineering as well as automation and control engineering with a particular focus on today’s data driven manufacturing. Terms such as industry 4.0, intelligent manufacturing, digital manufacturing and cyber-physical manufacturing systems are now used to identify the area of knowledge that IJCIM has supported and shaped in its history of more than 30 years.
IJCIM continues to grow and has become a key forum for academics and industrial researchers to exchange information and ideas. In response to this interest, IJCIM is now published monthly, enabling the editors to target topical special issues; topics as diverse as digital twins, transdisciplinary engineering, cloud manufacturing, deep learning for manufacturing, service-oriented architectures, dematerialized manufacturing systems, wireless manufacturing and digital enterprise technologies to name a few.