运用自回归综合移动平均线预测印尼消费者物价指数

Shahnaz Salsabila Ishak, Michael Abednego, Dian Maya Sari, Viyonisa Syafa Sabila, Khoirunnisa Khoirunnisa, Mika Alvionita, Luluk Muthoharoh
{"title":"运用自回归综合移动平均线预测印尼消费者物价指数","authors":"Shahnaz Salsabila Ishak, Michael Abednego, Dian Maya Sari, Viyonisa Syafa Sabila, Khoirunnisa Khoirunnisa, Mika Alvionita, Luluk Muthoharoh","doi":"10.24042/ijecs.v3i1.18252","DOIUrl":null,"url":null,"abstract":"The Consumer Price Index is one of the indicators used to confirm financial success in inflation management. This study aims to help determine the CPI prediction value in Indonesia for the next twelve periods in a month using the ARIMA (Autoregressive Integrated Moving Average) method using the data from January 2015 to March 2022. The results obtained show that the best model that can be used for forecasting is the ARIMA model (2,1,2) with drift with Akaike's Information Criterion (AIC) values of 2190.84. The results of Indonesia's accurate CPI forecasting can be used to assess inflation management for policymaking in the context of controlling inflation.It can be concluded that Based on the analysis, the optimal ARIMA model for forecasting Indonesia's CPI is ARIMA (2,1,2) with drift, aiding in evaluating inflation management for policymaking","PeriodicalId":190490,"journal":{"name":"International Journal of Electronics and Communications Systems","volume":"452 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indonesian Consumer Price Index Forecasting Using Autoregressive Integrated Moving Average\",\"authors\":\"Shahnaz Salsabila Ishak, Michael Abednego, Dian Maya Sari, Viyonisa Syafa Sabila, Khoirunnisa Khoirunnisa, Mika Alvionita, Luluk Muthoharoh\",\"doi\":\"10.24042/ijecs.v3i1.18252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Consumer Price Index is one of the indicators used to confirm financial success in inflation management. This study aims to help determine the CPI prediction value in Indonesia for the next twelve periods in a month using the ARIMA (Autoregressive Integrated Moving Average) method using the data from January 2015 to March 2022. The results obtained show that the best model that can be used for forecasting is the ARIMA model (2,1,2) with drift with Akaike's Information Criterion (AIC) values of 2190.84. The results of Indonesia's accurate CPI forecasting can be used to assess inflation management for policymaking in the context of controlling inflation.It can be concluded that Based on the analysis, the optimal ARIMA model for forecasting Indonesia's CPI is ARIMA (2,1,2) with drift, aiding in evaluating inflation management for policymaking\",\"PeriodicalId\":190490,\"journal\":{\"name\":\"International Journal of Electronics and Communications Systems\",\"volume\":\"452 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Communications Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24042/ijecs.v3i1.18252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24042/ijecs.v3i1.18252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

消费者价格指数是用来确认通货膨胀管理财务成功的指标之一。本研究旨在利用2015年1月至2022年3月的数据,使用ARIMA(自回归综合移动平均)方法,帮助确定印度尼西亚未来12个月的CPI预测值。结果表明,具有漂移的ARIMA模型(2,1,2)是预测的最佳模型,赤池信息准则(Akaike’s Information Criterion, AIC)值为2190.84。印度尼西亚准确的CPI预测结果可用于评估通货膨胀管理,为控制通货膨胀的政策制定提供参考。通过分析可知,预测印尼CPI的最优ARIMA模型为带有漂移的ARIMA(2,1,2),有助于评估通胀管理,为政策制定提供依据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indonesian Consumer Price Index Forecasting Using Autoregressive Integrated Moving Average
The Consumer Price Index is one of the indicators used to confirm financial success in inflation management. This study aims to help determine the CPI prediction value in Indonesia for the next twelve periods in a month using the ARIMA (Autoregressive Integrated Moving Average) method using the data from January 2015 to March 2022. The results obtained show that the best model that can be used for forecasting is the ARIMA model (2,1,2) with drift with Akaike's Information Criterion (AIC) values of 2190.84. The results of Indonesia's accurate CPI forecasting can be used to assess inflation management for policymaking in the context of controlling inflation.It can be concluded that Based on the analysis, the optimal ARIMA model for forecasting Indonesia's CPI is ARIMA (2,1,2) with drift, aiding in evaluating inflation management for policymaking
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality Management System Admin Module Development: A Study in the Department of Computer Science Indonesian Consumer Price Index Forecasting Using Autoregressive Integrated Moving Average Design of Virtual Map Building Using Unity 3D with MDLC Method Automation of Open VSwitch-Based Virtual Network Configuration Using Ansible on Proxmox Virtual Environment Near Infrared -Visible Photonic Bandgap in One-Dimensional Periodic Photonic Crystal Structure Composed of Tio2/Te Layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1