束推荐的多视图混合对比学习

Maoyan Lin, Youxin Hu, Zhixin Wang, Jianqiu Luo, Jinyu Huang
{"title":"束推荐的多视图混合对比学习","authors":"Maoyan Lin, Youxin Hu, Zhixin Wang, Jianqiu Luo, Jinyu Huang","doi":"10.4236/ojapps.2023.1310138","DOIUrl":null,"url":null,"abstract":"Bundle recommendation aims to provide users with convenient one-stop solutions by recommending bundles of related items that cater to their diverse needs. However, previous research has neglected the interaction between bundle and item views and relied on simplistic methods for predicting user-bundle relationships. To address this limitation, we propose Hybrid Contrastive Learning for Bundle Recommendation (HCLBR). Our approach integrates unsupervised and supervised contrastive learning to enrich user and bundle representations, promoting diversity. By leveraging interconnected views of user-item and user-bundle nodes, HCLBR enhances representation learning for robust recommendations. Evaluation on four public datasets demonstrates the superior performance of HCLBR over state-of-the-art baselines. Our findings highlight the significance of leveraging contrastive learning and interconnected views in bundle recommendation, providing valuable insights for marketing strategies and recommendation system design.","PeriodicalId":19671,"journal":{"name":"Open Journal of Applied Sciences","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-View Hybrid Contrastive Learning for Bundle Recommendation\",\"authors\":\"Maoyan Lin, Youxin Hu, Zhixin Wang, Jianqiu Luo, Jinyu Huang\",\"doi\":\"10.4236/ojapps.2023.1310138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bundle recommendation aims to provide users with convenient one-stop solutions by recommending bundles of related items that cater to their diverse needs. However, previous research has neglected the interaction between bundle and item views and relied on simplistic methods for predicting user-bundle relationships. To address this limitation, we propose Hybrid Contrastive Learning for Bundle Recommendation (HCLBR). Our approach integrates unsupervised and supervised contrastive learning to enrich user and bundle representations, promoting diversity. By leveraging interconnected views of user-item and user-bundle nodes, HCLBR enhances representation learning for robust recommendations. Evaluation on four public datasets demonstrates the superior performance of HCLBR over state-of-the-art baselines. Our findings highlight the significance of leveraging contrastive learning and interconnected views in bundle recommendation, providing valuable insights for marketing strategies and recommendation system design.\",\"PeriodicalId\":19671,\"journal\":{\"name\":\"Open Journal of Applied Sciences\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ojapps.2023.1310138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojapps.2023.1310138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

捆绑推荐的目的是为用户提供方便的一站式解决方案,通过捆绑推荐满足用户多样化需求的相关项目。然而,先前的研究忽略了bundle和item视图之间的交互,并且依赖于简单的方法来预测用户-bundle关系。为了解决这一限制,我们提出了混合对比学习的束推荐(HCLBR)。我们的方法集成了无监督和有监督的对比学习,以丰富用户和捆绑表示,促进多样性。通过利用用户项和用户束节点的互联视图,HCLBR增强了表示学习,以获得健壮的推荐。对四个公共数据集的评估表明,HCLBR优于最先进的基线。我们的研究结果强调了在捆绑推荐中利用对比学习和相互关联的观点的重要性,为营销策略和推荐系统设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-View Hybrid Contrastive Learning for Bundle Recommendation
Bundle recommendation aims to provide users with convenient one-stop solutions by recommending bundles of related items that cater to their diverse needs. However, previous research has neglected the interaction between bundle and item views and relied on simplistic methods for predicting user-bundle relationships. To address this limitation, we propose Hybrid Contrastive Learning for Bundle Recommendation (HCLBR). Our approach integrates unsupervised and supervised contrastive learning to enrich user and bundle representations, promoting diversity. By leveraging interconnected views of user-item and user-bundle nodes, HCLBR enhances representation learning for robust recommendations. Evaluation on four public datasets demonstrates the superior performance of HCLBR over state-of-the-art baselines. Our findings highlight the significance of leveraging contrastive learning and interconnected views in bundle recommendation, providing valuable insights for marketing strategies and recommendation system design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5MS/s 12-Bit Successive Approximation Analog-to-Digital Converter Determination of the Electrical Parameters of a Solar Cell in Steady State Thermal Characteristics of Earth Blocks Stabilized by Rice Husks Digital Transformation of Medical Maintenance at PSAFHM A Review of the Application of Process Evaluation in Junior High School English Teaching under “Double Reduction”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1