二维材料膜的制备

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 DOI:10.1595/205651324x16981367461019
Haowen Li, Qingqing Pan, Xiao Sui, Yuan Chen
{"title":"二维材料膜的制备","authors":"Haowen Li, Qingqing Pan, Xiao Sui, Yuan Chen","doi":"10.1595/205651324x16981367461019","DOIUrl":null,"url":null,"abstract":"Membrane separation is an energy-efficient separation process. Two-dimensional (2D) materials have shown potential as a new generation of membrane materials due to their unique structures and physio-chemical properties. The separation performance of 2D material membranes crucially depends on how 2D nanosheets are assembled in membranes, such as interlayer spacing between stacked nanosheets, chemical properties of nanosheet surfaces, alignment of nanosheets, and thickness of membranes, which are closely related to their fabrication methods. This short review concisely overviews commonly used membrane fabrication methods for different types of 2D materials, including graphene-based materials, 2D covalent organic frameworks, 2D metal-organic frameworks, MXenes, and other 2D materials. The representative 2D material membranes resulting from their essential fabrication methods are discussed. The advantages and shortcomings of different fabrication methods are compared. The critical challenges to realizing large-scale production of 2D material membranes for practical applications are highlighted.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Two-Dimensional Material Membranes\",\"authors\":\"Haowen Li, Qingqing Pan, Xiao Sui, Yuan Chen\",\"doi\":\"10.1595/205651324x16981367461019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane separation is an energy-efficient separation process. Two-dimensional (2D) materials have shown potential as a new generation of membrane materials due to their unique structures and physio-chemical properties. The separation performance of 2D material membranes crucially depends on how 2D nanosheets are assembled in membranes, such as interlayer spacing between stacked nanosheets, chemical properties of nanosheet surfaces, alignment of nanosheets, and thickness of membranes, which are closely related to their fabrication methods. This short review concisely overviews commonly used membrane fabrication methods for different types of 2D materials, including graphene-based materials, 2D covalent organic frameworks, 2D metal-organic frameworks, MXenes, and other 2D materials. The representative 2D material membranes resulting from their essential fabrication methods are discussed. The advantages and shortcomings of different fabrication methods are compared. The critical challenges to realizing large-scale production of 2D material membranes for practical applications are highlighted.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1595/205651324x16981367461019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1595/205651324x16981367461019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

膜分离是一种高效节能的分离工艺。二维(2D)材料由于其独特的结构和物理化学性质而显示出作为新一代膜材料的潜力。二维材料膜的分离性能在很大程度上取决于二维纳米片在膜中的组装方式,如堆叠纳米片之间的层间距、纳米片表面的化学性质、纳米片的排列以及膜的厚度,这些都与纳米片的制造方法密切相关。本文简要介绍了常用的二维材料的膜制备方法,包括石墨烯基材料、二维共价有机框架、二维金属有机框架、MXenes和其他二维材料。讨论了具有代表性的二维材料膜的基本制备方法。比较了不同制备方法的优缺点。强调了实现大规模生产用于实际应用的二维材料膜的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of Two-Dimensional Material Membranes
Membrane separation is an energy-efficient separation process. Two-dimensional (2D) materials have shown potential as a new generation of membrane materials due to their unique structures and physio-chemical properties. The separation performance of 2D material membranes crucially depends on how 2D nanosheets are assembled in membranes, such as interlayer spacing between stacked nanosheets, chemical properties of nanosheet surfaces, alignment of nanosheets, and thickness of membranes, which are closely related to their fabrication methods. This short review concisely overviews commonly used membrane fabrication methods for different types of 2D materials, including graphene-based materials, 2D covalent organic frameworks, 2D metal-organic frameworks, MXenes, and other 2D materials. The representative 2D material membranes resulting from their essential fabrication methods are discussed. The advantages and shortcomings of different fabrication methods are compared. The critical challenges to realizing large-scale production of 2D material membranes for practical applications are highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1