{"title":"基于区域分割的fpga单元级网表硬件木马检测","authors":"Ann Jelyn TIEMPO, Yong-Jin JEONG","doi":"10.1587/transinf.2023edl8036","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Array (FPGA) is gaining popularity because of their reconfigurability which brings in security concerns like inserting hardware trojan. Various detection methods to overcome this threat have been proposed but in the ASIC's supply chain and cannot directly apply to the FPGA application. In this paper, the authors aim to implement a structural feature-based detection method for detecting hardware trojan in a cell-level netlist, which is not well explored yet, where the nets are segmented into smaller groups based on their interconnection and further analyzed by looking at their structural similarities. Experiments show positive performance with an average detection rate of 95.41%, an average false alarm rate of 2.87% and average accuracy of 96.27%.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing Region-Based Segmentation for Hardware Trojan Detection in FPGAs Cell-Level Netlist\",\"authors\":\"Ann Jelyn TIEMPO, Yong-Jin JEONG\",\"doi\":\"10.1587/transinf.2023edl8036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field Programmable Gate Array (FPGA) is gaining popularity because of their reconfigurability which brings in security concerns like inserting hardware trojan. Various detection methods to overcome this threat have been proposed but in the ASIC's supply chain and cannot directly apply to the FPGA application. In this paper, the authors aim to implement a structural feature-based detection method for detecting hardware trojan in a cell-level netlist, which is not well explored yet, where the nets are segmented into smaller groups based on their interconnection and further analyzed by looking at their structural similarities. Experiments show positive performance with an average detection rate of 95.41%, an average false alarm rate of 2.87% and average accuracy of 96.27%.\",\"PeriodicalId\":55002,\"journal\":{\"name\":\"IEICE Transactions on Information and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Information and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transinf.2023edl8036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2023edl8036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Implementing Region-Based Segmentation for Hardware Trojan Detection in FPGAs Cell-Level Netlist
Field Programmable Gate Array (FPGA) is gaining popularity because of their reconfigurability which brings in security concerns like inserting hardware trojan. Various detection methods to overcome this threat have been proposed but in the ASIC's supply chain and cannot directly apply to the FPGA application. In this paper, the authors aim to implement a structural feature-based detection method for detecting hardware trojan in a cell-level netlist, which is not well explored yet, where the nets are segmented into smaller groups based on their interconnection and further analyzed by looking at their structural similarities. Experiments show positive performance with an average detection rate of 95.41%, an average false alarm rate of 2.87% and average accuracy of 96.27%.
期刊介绍:
Published by The Institute of Electronics, Information and Communication Engineers
Subject Area:
Mathematics
Physics
Biology, Life Sciences and Basic Medicine
General Medicine, Social Medicine, and Nursing Sciences
Clinical Medicine
Engineering in General
Nanosciences and Materials Sciences
Mechanical Engineering
Electrical and Electronic Engineering
Information Sciences
Economics, Business & Management
Psychology, Education.