一种基于在线顺序学习的轻量级强化学习分组路由方法

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IEICE Transactions on Information and Systems Pub Date : 2023-11-01 DOI:10.1587/transinf.2022edp7231
Kenji NEMOTO, Hiroki MATSUTANI
{"title":"一种基于在线顺序学习的轻量级强化学习分组路由方法","authors":"Kenji NEMOTO, Hiroki MATSUTANI","doi":"10.1587/transinf.2022edp7231","DOIUrl":null,"url":null,"abstract":"Existing simple routing protocols (e.g., OSPF, RIP) have some disadvantages of being inflexible and prone to congestion due to the concentration of packets on particular routers. To address these issues, packet routing methods using machine learning have been proposed recently. Compared to these algorithms, machine learning based methods can choose a routing path intelligently by learning efficient routes. However, machine learning based methods have a disadvantage of training time overhead. We thus focus on a lightweight machine learning algorithm, OS-ELM (Online Sequential Extreme Learning Machine), to reduce the training time. Although previous work on reinforcement learning using OS-ELM exists, it has a problem of low learning accuracy. In this paper, we propose OS-ELM QN (Q-Network) with a prioritized experience replay buffer to improve the learning performance. It is compared to a deep reinforcement learning based packet routing method using a network simulator. Experimental results show that introducing the experience replay buffer improves the learning performance. OS-ELM QN achieves a 2.33 times speedup than a DQN (Deep Q-Network) in terms of learning speed. Regarding the packet transfer latency, OS-ELM QN is comparable or slightly inferior to the DQN while they are better than OSPF in most cases since they can distribute congestions.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Reinforcement Learning Based Packet Routing Method Using Online Sequential Learning\",\"authors\":\"Kenji NEMOTO, Hiroki MATSUTANI\",\"doi\":\"10.1587/transinf.2022edp7231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing simple routing protocols (e.g., OSPF, RIP) have some disadvantages of being inflexible and prone to congestion due to the concentration of packets on particular routers. To address these issues, packet routing methods using machine learning have been proposed recently. Compared to these algorithms, machine learning based methods can choose a routing path intelligently by learning efficient routes. However, machine learning based methods have a disadvantage of training time overhead. We thus focus on a lightweight machine learning algorithm, OS-ELM (Online Sequential Extreme Learning Machine), to reduce the training time. Although previous work on reinforcement learning using OS-ELM exists, it has a problem of low learning accuracy. In this paper, we propose OS-ELM QN (Q-Network) with a prioritized experience replay buffer to improve the learning performance. It is compared to a deep reinforcement learning based packet routing method using a network simulator. Experimental results show that introducing the experience replay buffer improves the learning performance. OS-ELM QN achieves a 2.33 times speedup than a DQN (Deep Q-Network) in terms of learning speed. Regarding the packet transfer latency, OS-ELM QN is comparable or slightly inferior to the DQN while they are better than OSPF in most cases since they can distribute congestions.\",\"PeriodicalId\":55002,\"journal\":{\"name\":\"IEICE Transactions on Information and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Information and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transinf.2022edp7231\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2022edp7231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的简单路由协议(如OSPF、RIP)由于报文集中在特定的路由器上,存在灵活性不强、容易出现拥塞等缺点。为了解决这些问题,最近提出了使用机器学习的分组路由方法。与这些算法相比,基于机器学习的方法可以通过学习有效的路由来智能地选择路由路径。然而,基于机器学习的方法有训练时间开销的缺点。因此,我们专注于一个轻量级的机器学习算法,OS-ELM(在线顺序极限学习机),以减少训练时间。虽然已有使用OS-ELM进行强化学习的研究,但存在学习精度低的问题。在本文中,我们提出了带有优先体验重放缓冲的OS-ELM QN (Q-Network)来提高学习性能。使用网络模拟器将其与基于深度强化学习的数据包路由方法进行了比较。实验结果表明,引入经验回放缓冲可以提高学习性能。OS-ELM QN在学习速度上比DQN (Deep Q-Network)提高了2.33倍。在数据包传输延迟方面,OS-ELM QN与DQN相当或略低于DQN,但在大多数情况下优于OSPF,因为它们可以分配拥塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lightweight Reinforcement Learning Based Packet Routing Method Using Online Sequential Learning
Existing simple routing protocols (e.g., OSPF, RIP) have some disadvantages of being inflexible and prone to congestion due to the concentration of packets on particular routers. To address these issues, packet routing methods using machine learning have been proposed recently. Compared to these algorithms, machine learning based methods can choose a routing path intelligently by learning efficient routes. However, machine learning based methods have a disadvantage of training time overhead. We thus focus on a lightweight machine learning algorithm, OS-ELM (Online Sequential Extreme Learning Machine), to reduce the training time. Although previous work on reinforcement learning using OS-ELM exists, it has a problem of low learning accuracy. In this paper, we propose OS-ELM QN (Q-Network) with a prioritized experience replay buffer to improve the learning performance. It is compared to a deep reinforcement learning based packet routing method using a network simulator. Experimental results show that introducing the experience replay buffer improves the learning performance. OS-ELM QN achieves a 2.33 times speedup than a DQN (Deep Q-Network) in terms of learning speed. Regarding the packet transfer latency, OS-ELM QN is comparable or slightly inferior to the DQN while they are better than OSPF in most cases since they can distribute congestions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Transactions on Information and Systems
IEICE Transactions on Information and Systems 工程技术-计算机:软件工程
CiteScore
1.80
自引率
0.00%
发文量
238
审稿时长
5.0 months
期刊介绍: Published by The Institute of Electronics, Information and Communication Engineers Subject Area: Mathematics Physics Biology, Life Sciences and Basic Medicine General Medicine, Social Medicine, and Nursing Sciences Clinical Medicine Engineering in General Nanosciences and Materials Sciences Mechanical Engineering Electrical and Electronic Engineering Information Sciences Economics, Business & Management Psychology, Education.
期刊最新文献
Fresh Tea Sprouts Segmentation via Capsule Network Finformer: Fast Incremental and General Time Series Data Prediction Weighted Generalized Hesitant Fuzzy Sets and Its Application in Ensemble Learning TECDR: Cross-Domain Recommender System Based on Domain Knowledge Transferor and Latent Preference Extractor Investigating the Efficacy of Partial Decomposition in Kit-Build Concept Maps for Reducing Cognitive Load and Enhancing Reading Comprehension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1