{"title":"单级密集检测器检测新对象的双路径对象知识注入","authors":"KuanChao CHU, Hideki NAKAYAMA","doi":"10.1587/transinf.2022edp7216","DOIUrl":null,"url":null,"abstract":"We present an effective system for integrating generative zero-shot classification modules into a YOLO-like dense detector to detect novel objects. Most double-stage-based novel object detection methods are achieved by refining the classification output branch but cannot be applied to a dense detector. Our system utilizes two paths to inject knowledge of novel objects into a dense detector. One involves injecting the class confidence for novel classes from a classifier trained on data synthesized via a dual-step generator. This generator learns a mapping function between two feature spaces, resulting in better classification performance. The second path involves re-training the detector head with feature maps synthesized on different intensity levels. This approach significantly increases the predicted objectness for novel objects, which is a major challenge for a dense detector. We also introduce a stop-and-reload mechanism during re-training for optimizing across head layers to better learn synthesized features. Our method relaxes the constraint on the detector head architecture in the previous method and has markedly enhanced performance on the MSCOCO dataset.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"50 7","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Path Object Knowledge Injection for Detecting Novel Objects With Single-Stage Dense Detector\",\"authors\":\"KuanChao CHU, Hideki NAKAYAMA\",\"doi\":\"10.1587/transinf.2022edp7216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an effective system for integrating generative zero-shot classification modules into a YOLO-like dense detector to detect novel objects. Most double-stage-based novel object detection methods are achieved by refining the classification output branch but cannot be applied to a dense detector. Our system utilizes two paths to inject knowledge of novel objects into a dense detector. One involves injecting the class confidence for novel classes from a classifier trained on data synthesized via a dual-step generator. This generator learns a mapping function between two feature spaces, resulting in better classification performance. The second path involves re-training the detector head with feature maps synthesized on different intensity levels. This approach significantly increases the predicted objectness for novel objects, which is a major challenge for a dense detector. We also introduce a stop-and-reload mechanism during re-training for optimizing across head layers to better learn synthesized features. Our method relaxes the constraint on the detector head architecture in the previous method and has markedly enhanced performance on the MSCOCO dataset.\",\"PeriodicalId\":55002,\"journal\":{\"name\":\"IEICE Transactions on Information and Systems\",\"volume\":\"50 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Information and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transinf.2022edp7216\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2022edp7216","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Two-Path Object Knowledge Injection for Detecting Novel Objects With Single-Stage Dense Detector
We present an effective system for integrating generative zero-shot classification modules into a YOLO-like dense detector to detect novel objects. Most double-stage-based novel object detection methods are achieved by refining the classification output branch but cannot be applied to a dense detector. Our system utilizes two paths to inject knowledge of novel objects into a dense detector. One involves injecting the class confidence for novel classes from a classifier trained on data synthesized via a dual-step generator. This generator learns a mapping function between two feature spaces, resulting in better classification performance. The second path involves re-training the detector head with feature maps synthesized on different intensity levels. This approach significantly increases the predicted objectness for novel objects, which is a major challenge for a dense detector. We also introduce a stop-and-reload mechanism during re-training for optimizing across head layers to better learn synthesized features. Our method relaxes the constraint on the detector head architecture in the previous method and has markedly enhanced performance on the MSCOCO dataset.
期刊介绍:
Published by The Institute of Electronics, Information and Communication Engineers
Subject Area:
Mathematics
Physics
Biology, Life Sciences and Basic Medicine
General Medicine, Social Medicine, and Nursing Sciences
Clinical Medicine
Engineering in General
Nanosciences and Materials Sciences
Mechanical Engineering
Electrical and Electronic Engineering
Information Sciences
Economics, Business & Management
Psychology, Education.