f16极限环振荡预测的一种有效方法

IF 1.5 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Aircraft Pub Date : 2023-10-25 DOI:10.2514/1.c037391
Daniel Kariv, Donald L. Kunz, Michael Iovnovich
{"title":"f16极限环振荡预测的一种有效方法","authors":"Daniel Kariv, Donald L. Kunz, Michael Iovnovich","doi":"10.2514/1.c037391","DOIUrl":null,"url":null,"abstract":"This study presents the development and validation of a computationally efficient prediction framework for the well-known nonlinear F-16 limit cycle oscillation (LCO) phenomenon. The framework relies on a simple physical working model that has been suggested and demonstrated in the past according to which LCO is primarily a flutter instability that is bounded by the existence of nonlinear structural damping (NSD), although potentially affected by nonlinear aerodynamic effects as well. In the framework developed herein, the NSD model is derived and calibrated using a novel method that simplifies the process and allows applicability of the derived NSD models for multiple aircraft download cases. Good LCO prediction capabilities are obtained using the suggested method in terms of LCO levels and trends with flight conditions, as demonstrated using four F-16 test configurations. This framework also allows several practical benefits, which makes it particularly suitable for industrial-level applications.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"23 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward an Efficient Method for F-16 Limit Cycle Oscillation Prediction\",\"authors\":\"Daniel Kariv, Donald L. Kunz, Michael Iovnovich\",\"doi\":\"10.2514/1.c037391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the development and validation of a computationally efficient prediction framework for the well-known nonlinear F-16 limit cycle oscillation (LCO) phenomenon. The framework relies on a simple physical working model that has been suggested and demonstrated in the past according to which LCO is primarily a flutter instability that is bounded by the existence of nonlinear structural damping (NSD), although potentially affected by nonlinear aerodynamic effects as well. In the framework developed herein, the NSD model is derived and calibrated using a novel method that simplifies the process and allows applicability of the derived NSD models for multiple aircraft download cases. Good LCO prediction capabilities are obtained using the suggested method in terms of LCO levels and trends with flight conditions, as demonstrated using four F-16 test configurations. This framework also allows several practical benefits, which makes it particularly suitable for industrial-level applications.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037391\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c037391","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了F-16众所周知的非线性极限环振荡(LCO)现象的计算效率预测框架的开发和验证。该框架依赖于一个简单的物理工作模型,该模型在过去已经被提出和证明,根据该模型,LCO主要是由非线性结构阻尼(NSD)的存在所限制的颤振不稳定性,尽管也可能受到非线性气动效应的影响。在本文开发的框架中,使用一种新的方法推导和校准NSD模型,该方法简化了过程,并允许推导的NSD模型适用于多种飞机下载情况。根据LCO水平和随飞行条件变化的趋势,使用建议的方法获得了良好的LCO预测能力,并使用四种F-16测试配置进行了演示。该框架还提供了一些实际好处,这使得它特别适合工业级应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward an Efficient Method for F-16 Limit Cycle Oscillation Prediction
This study presents the development and validation of a computationally efficient prediction framework for the well-known nonlinear F-16 limit cycle oscillation (LCO) phenomenon. The framework relies on a simple physical working model that has been suggested and demonstrated in the past according to which LCO is primarily a flutter instability that is bounded by the existence of nonlinear structural damping (NSD), although potentially affected by nonlinear aerodynamic effects as well. In the framework developed herein, the NSD model is derived and calibrated using a novel method that simplifies the process and allows applicability of the derived NSD models for multiple aircraft download cases. Good LCO prediction capabilities are obtained using the suggested method in terms of LCO levels and trends with flight conditions, as demonstrated using four F-16 test configurations. This framework also allows several practical benefits, which makes it particularly suitable for industrial-level applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aircraft
Journal of Aircraft 工程技术-工程:宇航
CiteScore
4.50
自引率
31.80%
发文量
141
审稿时长
6 months
期刊介绍: This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.
期刊最新文献
Experimental Study on a Liquid Hydrogen Tank for Unmanned Aerial Vehicle Applications Numerical Study of Skipping Motion of Blended-Wing–Body Aircraft Ditching on Calm/Wavy Water Blended-Wing-Body Regional Aircraft Optimization with High-Fidelity Aerodynamics and Critical Design Requirements Towards Wall-Resolved Large-Eddy Simulation of the High-Lift Common Research Model Investigation of Hybrid Laminar Flow Control Capabilities from the Flight Envelope Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1