{"title":"基于编程的数学问题解决的概念化灵活性","authors":"Huiyan Ye, Oi-Lam Ng, Zhihao Cui","doi":"10.1177/07356331231209773","DOIUrl":null,"url":null,"abstract":"Computational thinking (CT) has received much attention in mathematics education in recent years, and researchers have begun to experiment with the integration of CT into mathematics education to promote students’ CT and mathematical thinking (MT) development. However, there is a lack of empirical evidence and new theoretical perspectives on the mechanisms of interaction between CT and MT. To address this research gap, this study analyses the participants’ thinking processes in solving programming-based mathematical problems from a flexibility perspective, focusing on the interplay between computational and mathematical thinking, that is, how CT and MT work together to influence and determine the problem-solver’s choice of solution strategy. Using data collected from a large design-based study, we summarise two types of flexibility and six subtypes of flexibility demonstrated by participants in the programming-based mathematical problem-solving process using thematic analysis. These different types of flexibility provide researchers and mathematics educators with new theoretical perspectives to examine the interplay of CT and MT. Findings will also contribute toward student learning characteristics in programming-based mathematical problem-solving to sketch the big picture of how CT and MT emerge in complementary or mismatching ways.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"24 4","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptualizing Flexibility in Programming-Based Mathematical Problem-Solving\",\"authors\":\"Huiyan Ye, Oi-Lam Ng, Zhihao Cui\",\"doi\":\"10.1177/07356331231209773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational thinking (CT) has received much attention in mathematics education in recent years, and researchers have begun to experiment with the integration of CT into mathematics education to promote students’ CT and mathematical thinking (MT) development. However, there is a lack of empirical evidence and new theoretical perspectives on the mechanisms of interaction between CT and MT. To address this research gap, this study analyses the participants’ thinking processes in solving programming-based mathematical problems from a flexibility perspective, focusing on the interplay between computational and mathematical thinking, that is, how CT and MT work together to influence and determine the problem-solver’s choice of solution strategy. Using data collected from a large design-based study, we summarise two types of flexibility and six subtypes of flexibility demonstrated by participants in the programming-based mathematical problem-solving process using thematic analysis. These different types of flexibility provide researchers and mathematics educators with new theoretical perspectives to examine the interplay of CT and MT. Findings will also contribute toward student learning characteristics in programming-based mathematical problem-solving to sketch the big picture of how CT and MT emerge in complementary or mismatching ways.\",\"PeriodicalId\":47865,\"journal\":{\"name\":\"Journal of Educational Computing Research\",\"volume\":\"24 4\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/07356331231209773\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07356331231209773","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Conceptualizing Flexibility in Programming-Based Mathematical Problem-Solving
Computational thinking (CT) has received much attention in mathematics education in recent years, and researchers have begun to experiment with the integration of CT into mathematics education to promote students’ CT and mathematical thinking (MT) development. However, there is a lack of empirical evidence and new theoretical perspectives on the mechanisms of interaction between CT and MT. To address this research gap, this study analyses the participants’ thinking processes in solving programming-based mathematical problems from a flexibility perspective, focusing on the interplay between computational and mathematical thinking, that is, how CT and MT work together to influence and determine the problem-solver’s choice of solution strategy. Using data collected from a large design-based study, we summarise two types of flexibility and six subtypes of flexibility demonstrated by participants in the programming-based mathematical problem-solving process using thematic analysis. These different types of flexibility provide researchers and mathematics educators with new theoretical perspectives to examine the interplay of CT and MT. Findings will also contribute toward student learning characteristics in programming-based mathematical problem-solving to sketch the big picture of how CT and MT emerge in complementary or mismatching ways.
期刊介绍:
The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.