{"title":"并网与孤岛模式下微电网暂态行为分析:LVRT与HVRT能力的比较研究","authors":"Abrar Shahriar Pramanik, Saeed Sepasi","doi":"10.3390/cleantechnol5040065","DOIUrl":null,"url":null,"abstract":"Microgrids, with integrated PV systems and nonlinear loads, have grown significantly in popularity in recent years, making the evaluation of their transient behaviors in grid-connected and islanded operations paramount. This study examines a microgrid’s low-voltage ride-through (LVRT) and high-voltage ride-through (HVRT) capabilities in these operational scenarios. The microgrid’s behavior was analyzed using both electromagnetic transient (EMT) and RMS simulation methods. Two operational modes, grid-connected and islanded, were considered. A three-phase diesel generator acted as a reference machine in islanded mode. Findings highlighted distinct behaviors in the two operational modes. The EMT simulation revealed in-depth characteristics of electrical parameters, showing high-frequency oscillations more precisely than the RMS simulation. Additionally, the transient recovery times were longer in islanded mode compared to grid-connected mode. The EMT simulation offers a more detailed portrayal of transient behaviors than the RMS simulation, especially in capturing high-frequency disturbances. However, its completion time becomes significantly extended with longer simulation durations. Microgrids showcase distinct transient behaviors in grid-connected versus islanded modes, especially in LVRT and HVRT scenarios. These findings are critical for the design and operation of modern microgrids.","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":" February","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Behavior Analysis of Microgrids in Grid-Connected and Islanded Modes: A Comparative Study of LVRT and HVRT Capabilities\",\"authors\":\"Abrar Shahriar Pramanik, Saeed Sepasi\",\"doi\":\"10.3390/cleantechnol5040065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrids, with integrated PV systems and nonlinear loads, have grown significantly in popularity in recent years, making the evaluation of their transient behaviors in grid-connected and islanded operations paramount. This study examines a microgrid’s low-voltage ride-through (LVRT) and high-voltage ride-through (HVRT) capabilities in these operational scenarios. The microgrid’s behavior was analyzed using both electromagnetic transient (EMT) and RMS simulation methods. Two operational modes, grid-connected and islanded, were considered. A three-phase diesel generator acted as a reference machine in islanded mode. Findings highlighted distinct behaviors in the two operational modes. The EMT simulation revealed in-depth characteristics of electrical parameters, showing high-frequency oscillations more precisely than the RMS simulation. Additionally, the transient recovery times were longer in islanded mode compared to grid-connected mode. The EMT simulation offers a more detailed portrayal of transient behaviors than the RMS simulation, especially in capturing high-frequency disturbances. However, its completion time becomes significantly extended with longer simulation durations. Microgrids showcase distinct transient behaviors in grid-connected versus islanded modes, especially in LVRT and HVRT scenarios. These findings are critical for the design and operation of modern microgrids.\",\"PeriodicalId\":10329,\"journal\":{\"name\":\"Clean Technologies and Environmental Policy\",\"volume\":\" February\",\"pages\":\"0\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean Technologies and Environmental Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cleantechnol5040065\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Technologies and Environmental Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cleantechnol5040065","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Transient Behavior Analysis of Microgrids in Grid-Connected and Islanded Modes: A Comparative Study of LVRT and HVRT Capabilities
Microgrids, with integrated PV systems and nonlinear loads, have grown significantly in popularity in recent years, making the evaluation of their transient behaviors in grid-connected and islanded operations paramount. This study examines a microgrid’s low-voltage ride-through (LVRT) and high-voltage ride-through (HVRT) capabilities in these operational scenarios. The microgrid’s behavior was analyzed using both electromagnetic transient (EMT) and RMS simulation methods. Two operational modes, grid-connected and islanded, were considered. A three-phase diesel generator acted as a reference machine in islanded mode. Findings highlighted distinct behaviors in the two operational modes. The EMT simulation revealed in-depth characteristics of electrical parameters, showing high-frequency oscillations more precisely than the RMS simulation. Additionally, the transient recovery times were longer in islanded mode compared to grid-connected mode. The EMT simulation offers a more detailed portrayal of transient behaviors than the RMS simulation, especially in capturing high-frequency disturbances. However, its completion time becomes significantly extended with longer simulation durations. Microgrids showcase distinct transient behaviors in grid-connected versus islanded modes, especially in LVRT and HVRT scenarios. These findings are critical for the design and operation of modern microgrids.
期刊介绍:
This journal publishes papers that aid in the development, demonstration, and commercialization of cleaner products and processes as well as effective environmental policy strategies. As its title suggests, the journal has two major thrusts: Clean Technologies and Environmental Policy.
The Clean Technology thrust addresses the science and engineering of clean technologies. Moreover, it examines mathematical and computer-based methods and models for designing, analyzing, and measuring the cleanliness of products and processes. The Environmental Policy thrust covers research advances in scientific, social, behavioral, and economics disciplines that are relevant to complex environmental policy issues.
In addition to research papers, the journal offers policy-oriented commentaries from world renowned leaders in environmental technology and policy research. It also features special issues focusing on topics of international concern.