Yan He, Chunyang You, Shuhua Liu, Mingjing Jiang, Pengcheng Shi
{"title":"热活化对锂矿渣-水泥复合粘结剂水化性能的影响","authors":"Yan He, Chunyang You, Shuhua Liu, Mingjing Jiang, Pengcheng Shi","doi":"10.1680/jadcr.23.00068","DOIUrl":null,"url":null,"abstract":"In order to enhance the utilization efficiency of lithium slag (LS) in cement-based materials, calcificated and thermal activation of LS were conducted, and the activation mechanism have been analyzed. Results showed that gypsum and spodumene in LS decomposed at high temperature via calcificated and thermal activation, and spodumene as well as limestone calcination decomposed at high temperature, to generate more CS, CA and other mineral phases. Calcificated and thermal activation could enhance the activity of LS to participate in pozzolanic reaction, and generate the formation of more hydration products. After calcificated and thermal activation of LS, the hydration exothermic peak, the total amount of hydration heat, and hydration production of LS composite binder were significantly increased. The hardened matrix was more compact with less porosity. Compared with cement mortar incorporated with raw LS, the incorporation of calcificated and thermal activated LS enhanced the compressive strength of cement mortar at 3d, 7d, and 28d by 25.8%, 13.4%, and 20.5%, respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of thermal activation on the hydration performance of lithium slag-cement composite binder\",\"authors\":\"Yan He, Chunyang You, Shuhua Liu, Mingjing Jiang, Pengcheng Shi\",\"doi\":\"10.1680/jadcr.23.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to enhance the utilization efficiency of lithium slag (LS) in cement-based materials, calcificated and thermal activation of LS were conducted, and the activation mechanism have been analyzed. Results showed that gypsum and spodumene in LS decomposed at high temperature via calcificated and thermal activation, and spodumene as well as limestone calcination decomposed at high temperature, to generate more CS, CA and other mineral phases. Calcificated and thermal activation could enhance the activity of LS to participate in pozzolanic reaction, and generate the formation of more hydration products. After calcificated and thermal activation of LS, the hydration exothermic peak, the total amount of hydration heat, and hydration production of LS composite binder were significantly increased. The hardened matrix was more compact with less porosity. Compared with cement mortar incorporated with raw LS, the incorporation of calcificated and thermal activated LS enhanced the compressive strength of cement mortar at 3d, 7d, and 28d by 25.8%, 13.4%, and 20.5%, respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.23.00068\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00068","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of thermal activation on the hydration performance of lithium slag-cement composite binder
In order to enhance the utilization efficiency of lithium slag (LS) in cement-based materials, calcificated and thermal activation of LS were conducted, and the activation mechanism have been analyzed. Results showed that gypsum and spodumene in LS decomposed at high temperature via calcificated and thermal activation, and spodumene as well as limestone calcination decomposed at high temperature, to generate more CS, CA and other mineral phases. Calcificated and thermal activation could enhance the activity of LS to participate in pozzolanic reaction, and generate the formation of more hydration products. After calcificated and thermal activation of LS, the hydration exothermic peak, the total amount of hydration heat, and hydration production of LS composite binder were significantly increased. The hardened matrix was more compact with less porosity. Compared with cement mortar incorporated with raw LS, the incorporation of calcificated and thermal activated LS enhanced the compressive strength of cement mortar at 3d, 7d, and 28d by 25.8%, 13.4%, and 20.5%, respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.