丹麦Egebjerg集水区抽取地下水的神经网络预测

IF 2 4区 地球科学 Q1 GEOLOGY Geus Bulletin Pub Date : 2023-11-10 DOI:10.34194/geusb.v53.8357
Mathias Busk Dahl, Troels Norvin Vilhelmsen, Trine Enemark, Thomas Mejer Hansen
{"title":"丹麦Egebjerg集水区抽取地下水的神经网络预测","authors":"Mathias Busk Dahl, Troels Norvin Vilhelmsen, Trine Enemark, Thomas Mejer Hansen","doi":"10.34194/geusb.v53.8357","DOIUrl":null,"url":null,"abstract":"Results from numerical simulations play a vital role in the decision process of everyday groundwater management. However, these simulations can be time-consuming for large-scale investigations, and it can be necessary to apply approximate methods instead. This study investigates the abilities of a neural network to replicate simulated drawdown from groundwater abstraction in a numerical groundwater model of the Egebjerg catchment, Denmark. We follow a generalised methodology that uses the information within the deterministic numerical model to create a training set for the neural network to learn from and extend the method to work in a 3D Danish groundwater model case. We compare the abilities of the trained neural network with the results of conventional computations in terms of speed and accuracy and argue that this approach has the potential to improve decision support for decision-makers within groundwater management.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" February","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network predictions of drawdown from groundwater abstraction in the Egebjerg catchment, Denmark\",\"authors\":\"Mathias Busk Dahl, Troels Norvin Vilhelmsen, Trine Enemark, Thomas Mejer Hansen\",\"doi\":\"10.34194/geusb.v53.8357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results from numerical simulations play a vital role in the decision process of everyday groundwater management. However, these simulations can be time-consuming for large-scale investigations, and it can be necessary to apply approximate methods instead. This study investigates the abilities of a neural network to replicate simulated drawdown from groundwater abstraction in a numerical groundwater model of the Egebjerg catchment, Denmark. We follow a generalised methodology that uses the information within the deterministic numerical model to create a training set for the neural network to learn from and extend the method to work in a 3D Danish groundwater model case. We compare the abilities of the trained neural network with the results of conventional computations in terms of speed and accuracy and argue that this approach has the potential to improve decision support for decision-makers within groundwater management.\",\"PeriodicalId\":48475,\"journal\":{\"name\":\"Geus Bulletin\",\"volume\":\" February\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geus Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34194/geusb.v53.8357\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geus Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34194/geusb.v53.8357","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

数值模拟结果在日常地下水管理决策过程中起着至关重要的作用。然而,这些模拟对于大规模的研究可能是耗时的,并且可能有必要应用近似方法来代替。本研究调查了神经网络在丹麦Egebjerg集水区的数值地下水模型中复制地下水抽取模拟下降的能力。我们遵循一种广义的方法,该方法使用确定性数值模型中的信息为神经网络创建一个训练集来学习并扩展该方法以适用于三维丹麦地下水模型案例。我们将训练后的神经网络的能力与传统计算结果在速度和准确性方面进行了比较,并认为这种方法有可能改善地下水管理决策者的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network predictions of drawdown from groundwater abstraction in the Egebjerg catchment, Denmark
Results from numerical simulations play a vital role in the decision process of everyday groundwater management. However, these simulations can be time-consuming for large-scale investigations, and it can be necessary to apply approximate methods instead. This study investigates the abilities of a neural network to replicate simulated drawdown from groundwater abstraction in a numerical groundwater model of the Egebjerg catchment, Denmark. We follow a generalised methodology that uses the information within the deterministic numerical model to create a training set for the neural network to learn from and extend the method to work in a 3D Danish groundwater model case. We compare the abilities of the trained neural network with the results of conventional computations in terms of speed and accuracy and argue that this approach has the potential to improve decision support for decision-makers within groundwater management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geus Bulletin
Geus Bulletin GEOLOGY-
CiteScore
2.80
自引率
17.60%
发文量
8
期刊最新文献
Petrology of the Skaergaard Layered Series Stratigraphy of the Upper Jurassic to lowermost Cretaceous in the Rødryggen-1 and Brorson Halvø-1 boreholes, Wollaston Forland, North-East Greenland  Organic geochemistry of an Upper Jurassic – Lower Cretaceous mudstone succession in a narrow graben setting, Wollaston Forland Basin, North-East Greenland Upper Jurassic – Lower Cretaceous of eastern Wollaston Forland, North-East Greenland: a distal marine record of an evolving rift Mudstone diagenesis and sandstone provenance in an Upper Jurassic – Lower Cretaceous evolving half-graben system, Wollaston Forland, North-East Greenland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1