Ebrahim Farahmand, Ali Mahani, Muhammad Abdullah Hanif, Muhammad Shafique
{"title":"高性能异构块近似加法器的设计与分析","authors":"Ebrahim Farahmand, Ali Mahani, Muhammad Abdullah Hanif, Muhammad Shafique","doi":"10.1145/3625686","DOIUrl":null,"url":null,"abstract":"Approximate computing is an emerging paradigm to improve the power and performance efficiency of error-resilient applications. As adders are one of the key components in almost all processing systems, a significant amount of research has been carried out toward designing approximate adders that can offer better efficiency than conventional designs; however, at the cost of some accuracy loss. In this article, we highlight a new class of energy-efficient approximate adders, namely, Heterogeneous Block-based Approximate Adders (HBAAs), and propose a generic configurable adder model that can be configured to represent a particular HBAA configuration. An HBAA, in general, is composed of heterogeneous sub-adder blocks of equal length, where each sub-adder can be an approximate sub-adder and have a different configuration. The sub-adders are mainly approximated through inexact logic and carry truncation. Compared to the existing design space, HBAAs provide additional design points that fall on the Pareto-front and offer a better quality-efficiency tradeoff in certain scenarios. Furthermore, to enable efficient design space exploration based on user-defined constraints, we propose an analytical model to efficiently evaluate the Probability Mass Function (PMF) of approximation error and other error metrics, such as Mean Error Distance (MED), Normalized Mean Error Distance (NMED), and Error Rate (ER) of HBAAs. The results show that HBAA configurations can provide around 15% reduction in area and up to 17% reduction in energy compared to state-of-the-art approximate adders.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":" 89","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Analysis of High Performance Heterogeneous Block-based Approximate Adders\",\"authors\":\"Ebrahim Farahmand, Ali Mahani, Muhammad Abdullah Hanif, Muhammad Shafique\",\"doi\":\"10.1145/3625686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate computing is an emerging paradigm to improve the power and performance efficiency of error-resilient applications. As adders are one of the key components in almost all processing systems, a significant amount of research has been carried out toward designing approximate adders that can offer better efficiency than conventional designs; however, at the cost of some accuracy loss. In this article, we highlight a new class of energy-efficient approximate adders, namely, Heterogeneous Block-based Approximate Adders (HBAAs), and propose a generic configurable adder model that can be configured to represent a particular HBAA configuration. An HBAA, in general, is composed of heterogeneous sub-adder blocks of equal length, where each sub-adder can be an approximate sub-adder and have a different configuration. The sub-adders are mainly approximated through inexact logic and carry truncation. Compared to the existing design space, HBAAs provide additional design points that fall on the Pareto-front and offer a better quality-efficiency tradeoff in certain scenarios. Furthermore, to enable efficient design space exploration based on user-defined constraints, we propose an analytical model to efficiently evaluate the Probability Mass Function (PMF) of approximation error and other error metrics, such as Mean Error Distance (MED), Normalized Mean Error Distance (NMED), and Error Rate (ER) of HBAAs. The results show that HBAA configurations can provide around 15% reduction in area and up to 17% reduction in energy compared to state-of-the-art approximate adders.\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\" 89\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3625686\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625686","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Design and Analysis of High Performance Heterogeneous Block-based Approximate Adders
Approximate computing is an emerging paradigm to improve the power and performance efficiency of error-resilient applications. As adders are one of the key components in almost all processing systems, a significant amount of research has been carried out toward designing approximate adders that can offer better efficiency than conventional designs; however, at the cost of some accuracy loss. In this article, we highlight a new class of energy-efficient approximate adders, namely, Heterogeneous Block-based Approximate Adders (HBAAs), and propose a generic configurable adder model that can be configured to represent a particular HBAA configuration. An HBAA, in general, is composed of heterogeneous sub-adder blocks of equal length, where each sub-adder can be an approximate sub-adder and have a different configuration. The sub-adders are mainly approximated through inexact logic and carry truncation. Compared to the existing design space, HBAAs provide additional design points that fall on the Pareto-front and offer a better quality-efficiency tradeoff in certain scenarios. Furthermore, to enable efficient design space exploration based on user-defined constraints, we propose an analytical model to efficiently evaluate the Probability Mass Function (PMF) of approximation error and other error metrics, such as Mean Error Distance (MED), Normalized Mean Error Distance (NMED), and Error Rate (ER) of HBAAs. The results show that HBAA configurations can provide around 15% reduction in area and up to 17% reduction in energy compared to state-of-the-art approximate adders.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.