Rahman Gharari, Farrokh Khoshahval, Mostafa Hasanzadeh, M. Amin Mozaffari, M. Amin Amirkhani, Hadi Esmaili
{"title":"基于管状燃料设计的新型堆芯TRR的中子和热水力评价","authors":"Rahman Gharari, Farrokh Khoshahval, Mostafa Hasanzadeh, M. Amin Mozaffari, M. Amin Amirkhani, Hadi Esmaili","doi":"10.1515/kern-2023-0042","DOIUrl":null,"url":null,"abstract":"Abstract Herein, the feasibility study of the Tehran Research Reactor (TRR) with a new core designed based on tubular fuels from the neutronic, thermal-hydraulic, safety, and operational points of are investigated using MCNPX, WIMS, CITATION, Computational Fluid Dynamics (CFD), and RELAP codes. According to the results, the total neutron flux in the new core with tubular fuels is increased by more than 14.3 % compared with the current core of the TRR with plate-type fuels. Moreover, due to the higher fuel amount in the tubular compared with plate-type fuels (about 17 % in similar conditions), its effective multiplication factor is much higher than the TRR with plate-type fuels. Moreover, the results show that the maximum cladding temperature is sufficiently lower than 105 °C and the produced heat in the tubular fuel are removed without changing the current flow rate of the core. Furthermore, the maximum fuel temperature in tubular fuel is about 10 °C lower than the maximum fuel temperature in the current standard fuel element.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":" 19","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutronic and thermal-hydraulic assessment of the TRR with new core designed based on tubular fuels\",\"authors\":\"Rahman Gharari, Farrokh Khoshahval, Mostafa Hasanzadeh, M. Amin Mozaffari, M. Amin Amirkhani, Hadi Esmaili\",\"doi\":\"10.1515/kern-2023-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Herein, the feasibility study of the Tehran Research Reactor (TRR) with a new core designed based on tubular fuels from the neutronic, thermal-hydraulic, safety, and operational points of are investigated using MCNPX, WIMS, CITATION, Computational Fluid Dynamics (CFD), and RELAP codes. According to the results, the total neutron flux in the new core with tubular fuels is increased by more than 14.3 % compared with the current core of the TRR with plate-type fuels. Moreover, due to the higher fuel amount in the tubular compared with plate-type fuels (about 17 % in similar conditions), its effective multiplication factor is much higher than the TRR with plate-type fuels. Moreover, the results show that the maximum cladding temperature is sufficiently lower than 105 °C and the produced heat in the tubular fuel are removed without changing the current flow rate of the core. Furthermore, the maximum fuel temperature in tubular fuel is about 10 °C lower than the maximum fuel temperature in the current standard fuel element.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\" 19\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2023-0042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/kern-2023-0042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Neutronic and thermal-hydraulic assessment of the TRR with new core designed based on tubular fuels
Abstract Herein, the feasibility study of the Tehran Research Reactor (TRR) with a new core designed based on tubular fuels from the neutronic, thermal-hydraulic, safety, and operational points of are investigated using MCNPX, WIMS, CITATION, Computational Fluid Dynamics (CFD), and RELAP codes. According to the results, the total neutron flux in the new core with tubular fuels is increased by more than 14.3 % compared with the current core of the TRR with plate-type fuels. Moreover, due to the higher fuel amount in the tubular compared with plate-type fuels (about 17 % in similar conditions), its effective multiplication factor is much higher than the TRR with plate-type fuels. Moreover, the results show that the maximum cladding temperature is sufficiently lower than 105 °C and the produced heat in the tubular fuel are removed without changing the current flow rate of the core. Furthermore, the maximum fuel temperature in tubular fuel is about 10 °C lower than the maximum fuel temperature in the current standard fuel element.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).