{"title":"锌锰液流电池中Mn 2+ /Mn 4+可逆溶解/沉积的电解质添加剂","authors":"Chutamas Tamtong, Wathanyu Kao-ian, Pinit Kidkhunthod, Soorathep Kheawhom","doi":"10.1080/10584587.2023.2234570","DOIUrl":null,"url":null,"abstract":"AbstractDue to its adaptability in scaling up, a redox flow battery (RFB) is seen to be one of the finest options for large-scale electrical backup systems. As a result, it is feasible to create RFB systems that are both cost and performance effective. Recently, a zinc-manganese RFB that relies on Zn(s)/Zn2+(aq) and Mn2+(aq)/MnO2 redox couples has gained attention since both zinc and manganese are cheap, abundant, and eco-friendly. However, the reversibility of Mn2+(aq)/MnO2 at the positive electrode is limited by the formation of Mn3+ species upon charge/discharge (CD) cycling, resulting in severe capacity fading. Herein, this study examines the use of reducing agents as electrolyte additives to enhance the reversibility of the Mn2+(aq)/MnO2 reaction. Experimental results indicate that sulfuric acid and oxalic acid as additives can significantly improve the reversibility of the Mn2+(aq)/MnO2 reaction and the cycling stability of zinc-manganese RFBs. The acetate-based system demonstrates better reversible reaction than the sulfate-based system having more than 100 CD cycles at a current density of 10 mA/cm2. Coulombic efficiency (CE) is also seen to be higher than 90%. Overall, results lead to increased efficiency and cycling stability for zinc-manganese RFBs.Keywords: Zinc-manganese flow batteryelectrolyte additivemanganese oxide dissolution/depositionMn2+(aq)/MnO2 AcknowledgmentsThe Program Management Unit for Human Resources & Institutional Development, Research and Innovation (B16F640166), the Energy Storage Cluster, Chulalongkorn University, and Beamline 5.2 at Synchrotron Light Research Institute (SLRI) are acknowledged.Disclosure StatementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"95 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte Additives for Reversible Dissolution/Deposition of Mn <sup>2+</sup> /Mn <sup>4+</sup> in a Zinc-Manganese Flow Battery\",\"authors\":\"Chutamas Tamtong, Wathanyu Kao-ian, Pinit Kidkhunthod, Soorathep Kheawhom\",\"doi\":\"10.1080/10584587.2023.2234570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractDue to its adaptability in scaling up, a redox flow battery (RFB) is seen to be one of the finest options for large-scale electrical backup systems. As a result, it is feasible to create RFB systems that are both cost and performance effective. Recently, a zinc-manganese RFB that relies on Zn(s)/Zn2+(aq) and Mn2+(aq)/MnO2 redox couples has gained attention since both zinc and manganese are cheap, abundant, and eco-friendly. However, the reversibility of Mn2+(aq)/MnO2 at the positive electrode is limited by the formation of Mn3+ species upon charge/discharge (CD) cycling, resulting in severe capacity fading. Herein, this study examines the use of reducing agents as electrolyte additives to enhance the reversibility of the Mn2+(aq)/MnO2 reaction. Experimental results indicate that sulfuric acid and oxalic acid as additives can significantly improve the reversibility of the Mn2+(aq)/MnO2 reaction and the cycling stability of zinc-manganese RFBs. The acetate-based system demonstrates better reversible reaction than the sulfate-based system having more than 100 CD cycles at a current density of 10 mA/cm2. Coulombic efficiency (CE) is also seen to be higher than 90%. Overall, results lead to increased efficiency and cycling stability for zinc-manganese RFBs.Keywords: Zinc-manganese flow batteryelectrolyte additivemanganese oxide dissolution/depositionMn2+(aq)/MnO2 AcknowledgmentsThe Program Management Unit for Human Resources & Institutional Development, Research and Innovation (B16F640166), the Energy Storage Cluster, Chulalongkorn University, and Beamline 5.2 at Synchrotron Light Research Institute (SLRI) are acknowledged.Disclosure StatementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":13686,\"journal\":{\"name\":\"Integrated Ferroelectrics\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10584587.2023.2234570\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234570","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electrolyte Additives for Reversible Dissolution/Deposition of Mn 2+ /Mn 4+ in a Zinc-Manganese Flow Battery
AbstractDue to its adaptability in scaling up, a redox flow battery (RFB) is seen to be one of the finest options for large-scale electrical backup systems. As a result, it is feasible to create RFB systems that are both cost and performance effective. Recently, a zinc-manganese RFB that relies on Zn(s)/Zn2+(aq) and Mn2+(aq)/MnO2 redox couples has gained attention since both zinc and manganese are cheap, abundant, and eco-friendly. However, the reversibility of Mn2+(aq)/MnO2 at the positive electrode is limited by the formation of Mn3+ species upon charge/discharge (CD) cycling, resulting in severe capacity fading. Herein, this study examines the use of reducing agents as electrolyte additives to enhance the reversibility of the Mn2+(aq)/MnO2 reaction. Experimental results indicate that sulfuric acid and oxalic acid as additives can significantly improve the reversibility of the Mn2+(aq)/MnO2 reaction and the cycling stability of zinc-manganese RFBs. The acetate-based system demonstrates better reversible reaction than the sulfate-based system having more than 100 CD cycles at a current density of 10 mA/cm2. Coulombic efficiency (CE) is also seen to be higher than 90%. Overall, results lead to increased efficiency and cycling stability for zinc-manganese RFBs.Keywords: Zinc-manganese flow batteryelectrolyte additivemanganese oxide dissolution/depositionMn2+(aq)/MnO2 AcknowledgmentsThe Program Management Unit for Human Resources & Institutional Development, Research and Innovation (B16F640166), the Energy Storage Cluster, Chulalongkorn University, and Beamline 5.2 at Synchrotron Light Research Institute (SLRI) are acknowledged.Disclosure StatementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.