小尺度巷道模型合理加载模式及其在采矿工程中的应用研究

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Energy Exploration & Exploitation Pub Date : 2023-10-08 DOI:10.1177/01445987231196615
Yanchun Yin, Yuanhui Zhu, Yang Chen, Yue Qiu, Biao Chen
{"title":"小尺度巷道模型合理加载模式及其在采矿工程中的应用研究","authors":"Yanchun Yin, Yuanhui Zhu, Yang Chen, Yue Qiu, Biao Chen","doi":"10.1177/01445987231196615","DOIUrl":null,"url":null,"abstract":"The small-scale roadway model is often used in the fine simulation of mining engineering. The determination of the structure and load conditions of the model has an important influence on the accuracy of the simulation. In this paper, a large-scale stratum model and a small-scale roadway model are established by using finite element method. The optimal loading mode of the roadway model and its applicability under different roof-sidewall stiffness ratios are studied. The simulation accuracy of the roadway model is quantitatively evaluated by comparing the distribution laws of stress field and strain field with those of the stratum models. Under the same roof-sidewall stiffness ratio, the similarity between the simulation results of the roadway model and the stratum model under displacement load is much higher than that under stress load. Under the same load mode, the stress and strain similarity between the stratum model and roadway model increases with the increase of the roof-sidewall stiffness ratio. Furtherly, the simulation application of the roadway drilling pressure relief is carried out. Compared with the large-scale stratum model with small-size elements, the small-scale roadway model under displacement load also shows obvious stress transfer after drilling pressure relief, while it has faster computational efficiency. Finally, a small-scale roadway model simulation method suitable for surrounding rock disaster occurrence mechanism and control is proposed.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on reasonable loading mode of small-scale roadway model and its application in mining engineering\",\"authors\":\"Yanchun Yin, Yuanhui Zhu, Yang Chen, Yue Qiu, Biao Chen\",\"doi\":\"10.1177/01445987231196615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The small-scale roadway model is often used in the fine simulation of mining engineering. The determination of the structure and load conditions of the model has an important influence on the accuracy of the simulation. In this paper, a large-scale stratum model and a small-scale roadway model are established by using finite element method. The optimal loading mode of the roadway model and its applicability under different roof-sidewall stiffness ratios are studied. The simulation accuracy of the roadway model is quantitatively evaluated by comparing the distribution laws of stress field and strain field with those of the stratum models. Under the same roof-sidewall stiffness ratio, the similarity between the simulation results of the roadway model and the stratum model under displacement load is much higher than that under stress load. Under the same load mode, the stress and strain similarity between the stratum model and roadway model increases with the increase of the roof-sidewall stiffness ratio. Furtherly, the simulation application of the roadway drilling pressure relief is carried out. Compared with the large-scale stratum model with small-size elements, the small-scale roadway model under displacement load also shows obvious stress transfer after drilling pressure relief, while it has faster computational efficiency. Finally, a small-scale roadway model simulation method suitable for surrounding rock disaster occurrence mechanism and control is proposed.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231196615\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987231196615","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

小尺度巷道模型是矿山工程精细模拟中常用的一种模型。模型结构和载荷条件的确定对仿真的精度有重要影响。本文采用有限元方法建立了大尺度地层模型和小尺度巷道模型。研究了巷道模型的最优加载方式及其在不同顶侧刚度比下的适用性。通过与地层模型的应力场、应变场分布规律的比较,定量评价了巷道模型的模拟精度。在顶侧刚度比相同的情况下,位移荷载作用下巷道模型与地层模型的模拟结果的相似性远大于应力荷载作用下的相似度。在相同荷载模式下,地层模型与巷道模型的应力应变相似度随着顶侧刚度比的增大而增大。在此基础上,进行了巷道钻井卸压的模拟应用。与具有小单元的大尺度地层模型相比,位移荷载作用下的小尺度巷道模型在钻压卸压后也表现出明显的应力传递,且计算效率更快。最后,提出了一种适用于围岩灾害发生机理及控制的小尺度巷道模型模拟方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on reasonable loading mode of small-scale roadway model and its application in mining engineering
The small-scale roadway model is often used in the fine simulation of mining engineering. The determination of the structure and load conditions of the model has an important influence on the accuracy of the simulation. In this paper, a large-scale stratum model and a small-scale roadway model are established by using finite element method. The optimal loading mode of the roadway model and its applicability under different roof-sidewall stiffness ratios are studied. The simulation accuracy of the roadway model is quantitatively evaluated by comparing the distribution laws of stress field and strain field with those of the stratum models. Under the same roof-sidewall stiffness ratio, the similarity between the simulation results of the roadway model and the stratum model under displacement load is much higher than that under stress load. Under the same load mode, the stress and strain similarity between the stratum model and roadway model increases with the increase of the roof-sidewall stiffness ratio. Furtherly, the simulation application of the roadway drilling pressure relief is carried out. Compared with the large-scale stratum model with small-size elements, the small-scale roadway model under displacement load also shows obvious stress transfer after drilling pressure relief, while it has faster computational efficiency. Finally, a small-scale roadway model simulation method suitable for surrounding rock disaster occurrence mechanism and control is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Exploration & Exploitation
Energy Exploration & Exploitation 工程技术-能源与燃料
CiteScore
5.40
自引率
3.70%
发文量
78
审稿时长
3.9 months
期刊介绍: Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.
期刊最新文献
Sustainable energy recovery from municipal solid wastes: An in-depth analysis of waste-to-energy technologies and their environmental implications in India Discussion on the production mechanism of deep coalbed methane in the eastern margin of the Ordos Basin Assessing the diffusion of photovoltaic technology and electric vehicles using system dynamics modeling Trihybrid nanofluid flow through nozzle of a rocket engine: Numerical solution and irreversibility analysis An advanced hybrid deep learning model for accurate energy load prediction in smart building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1