{"title":"固态燃烧技术合成无铅BNBLT-xBSN陶瓷的相形成、形貌和电性能","authors":"Bhoowadol Thatawong, Naratip Vittayakorn, Aurawan Rittidech, Theerachai Bongkarn","doi":"10.1080/10584587.2023.2234563","DOIUrl":null,"url":null,"abstract":"AbstractLead-free 1-x(Bi0.47Na0.47Ba0.06)0.95La0.05TiO3-xBa(Sn0.70Nb0.24)O3 (BNBLT-xBSN) ceramics with x = 0, 0.01, 0.02, 0.03 and 0.04 mol.% were synthesized by the solid-state combustion technique with a calcination temperature of 750 °C for 2 h and a sintering temperature of 1150 °C for 2 h. The effect of BSN substitution on the phase formation, microstructure, dielectric, ferroelectric and energy storage properties of the BNBLT ceramics was investigated. With the substitution of BSN, the coexisting rhombohedral (R) and tetragonal (T) phases transformed into coexisting R and cubic (C) phase, verified by Rietveld refinement. The C phase increased with increased BSN content. The average grain size decreased from 1.14 to 0.89 µm when x increased to 0.03 and then increased to 0.96 µm. The measured density and maximum dielectric constant (εm) tended to increase from 5.44 to 5.87 g/cm3 and 1800 to 1942 when x increased to 0.03, then decreased to 5.25 g/cm3 and 1501, respectively. The remanent polarization (Pr) and coercive field (Ec) decreased when x increased to 0.03. The 0.97BNBLT-0.03BSN ceramic exhibited the lowest energy loss density (Wloss ∼ 0.10 J/cm3) and the highest energy-storage efficiency (η ∼ 77.3%) measured under an electric field of 70 kV/cm.Keywords: BNBLT-xBSNcombustiondielectricferroelectricenergy storage AcknowledgmentsThe authors thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities. Thanks are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Naresuan University (NU) and National Science, Research and Innovation Fund (NSRF) with Grant No. R2567B001. The works of N. Vittayakorn was funded by KMITL under Grant No. KREF116501.","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"46 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Formation, Morphology and Electrical Properties of Lead-Free BNBLT-xBSN Ceramics Synthesized via the Solid-State Combustion Technique\",\"authors\":\"Bhoowadol Thatawong, Naratip Vittayakorn, Aurawan Rittidech, Theerachai Bongkarn\",\"doi\":\"10.1080/10584587.2023.2234563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractLead-free 1-x(Bi0.47Na0.47Ba0.06)0.95La0.05TiO3-xBa(Sn0.70Nb0.24)O3 (BNBLT-xBSN) ceramics with x = 0, 0.01, 0.02, 0.03 and 0.04 mol.% were synthesized by the solid-state combustion technique with a calcination temperature of 750 °C for 2 h and a sintering temperature of 1150 °C for 2 h. The effect of BSN substitution on the phase formation, microstructure, dielectric, ferroelectric and energy storage properties of the BNBLT ceramics was investigated. With the substitution of BSN, the coexisting rhombohedral (R) and tetragonal (T) phases transformed into coexisting R and cubic (C) phase, verified by Rietveld refinement. The C phase increased with increased BSN content. The average grain size decreased from 1.14 to 0.89 µm when x increased to 0.03 and then increased to 0.96 µm. The measured density and maximum dielectric constant (εm) tended to increase from 5.44 to 5.87 g/cm3 and 1800 to 1942 when x increased to 0.03, then decreased to 5.25 g/cm3 and 1501, respectively. The remanent polarization (Pr) and coercive field (Ec) decreased when x increased to 0.03. The 0.97BNBLT-0.03BSN ceramic exhibited the lowest energy loss density (Wloss ∼ 0.10 J/cm3) and the highest energy-storage efficiency (η ∼ 77.3%) measured under an electric field of 70 kV/cm.Keywords: BNBLT-xBSNcombustiondielectricferroelectricenergy storage AcknowledgmentsThe authors thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities. Thanks are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Naresuan University (NU) and National Science, Research and Innovation Fund (NSRF) with Grant No. R2567B001. The works of N. Vittayakorn was funded by KMITL under Grant No. KREF116501.\",\"PeriodicalId\":13686,\"journal\":{\"name\":\"Integrated Ferroelectrics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10584587.2023.2234563\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234563","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Phase Formation, Morphology and Electrical Properties of Lead-Free BNBLT-xBSN Ceramics Synthesized via the Solid-State Combustion Technique
AbstractLead-free 1-x(Bi0.47Na0.47Ba0.06)0.95La0.05TiO3-xBa(Sn0.70Nb0.24)O3 (BNBLT-xBSN) ceramics with x = 0, 0.01, 0.02, 0.03 and 0.04 mol.% were synthesized by the solid-state combustion technique with a calcination temperature of 750 °C for 2 h and a sintering temperature of 1150 °C for 2 h. The effect of BSN substitution on the phase formation, microstructure, dielectric, ferroelectric and energy storage properties of the BNBLT ceramics was investigated. With the substitution of BSN, the coexisting rhombohedral (R) and tetragonal (T) phases transformed into coexisting R and cubic (C) phase, verified by Rietveld refinement. The C phase increased with increased BSN content. The average grain size decreased from 1.14 to 0.89 µm when x increased to 0.03 and then increased to 0.96 µm. The measured density and maximum dielectric constant (εm) tended to increase from 5.44 to 5.87 g/cm3 and 1800 to 1942 when x increased to 0.03, then decreased to 5.25 g/cm3 and 1501, respectively. The remanent polarization (Pr) and coercive field (Ec) decreased when x increased to 0.03. The 0.97BNBLT-0.03BSN ceramic exhibited the lowest energy loss density (Wloss ∼ 0.10 J/cm3) and the highest energy-storage efficiency (η ∼ 77.3%) measured under an electric field of 70 kV/cm.Keywords: BNBLT-xBSNcombustiondielectricferroelectricenergy storage AcknowledgmentsThe authors thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities. Thanks are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Naresuan University (NU) and National Science, Research and Innovation Fund (NSRF) with Grant No. R2567B001. The works of N. Vittayakorn was funded by KMITL under Grant No. KREF116501.
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.