滑移状态MHD 2-液体等离子体传热流与平行板之间的霍尔电流

T. LINGA RAJU, P. SATISH
{"title":"滑移状态MHD 2-液体等离子体传热流与平行板之间的霍尔电流","authors":"T. LINGA RAJU, P. SATISH","doi":"10.59441/ijame/172898","DOIUrl":null,"url":null,"abstract":"The influence of the slip factor on the MHD 2-liquid heat transfer flow of ionized gases within a channel between two non-conducting plates with Hall currents is investigated theoretically. Slip conditions were used to obtain solutions for the velocity and temperature fields, as well as the heat transfer rates. The flow characteristics of the two liquids are studied for estimates of the leading parameters, for instance the magnetic parameter, Hall and slip factors, viscosity, density, height, electrical conductivity and the thermal conductivity ratios. It was observed that an upsurge in temperature in the two zones is caused by the thermal conductivity proportion. The rate of heat transfer coefficient diminishes up to a certain point, after that it starts to increase as the magnetic and Hall parameters increase","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slip regime MHD 2-liquid plasma heat transfer flow with hall currents between parallel plates\",\"authors\":\"T. LINGA RAJU, P. SATISH\",\"doi\":\"10.59441/ijame/172898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of the slip factor on the MHD 2-liquid heat transfer flow of ionized gases within a channel between two non-conducting plates with Hall currents is investigated theoretically. Slip conditions were used to obtain solutions for the velocity and temperature fields, as well as the heat transfer rates. The flow characteristics of the two liquids are studied for estimates of the leading parameters, for instance the magnetic parameter, Hall and slip factors, viscosity, density, height, electrical conductivity and the thermal conductivity ratios. It was observed that an upsurge in temperature in the two zones is caused by the thermal conductivity proportion. The rate of heat transfer coefficient diminishes up to a certain point, after that it starts to increase as the magnetic and Hall parameters increase\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame/172898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame/172898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

从理论上研究了滑移因子对具有霍尔电流的非导电板间通道内电离气体MHD - 2-液体换热流的影响。采用滑移条件得到了速度场、温度场和换热率的解。研究了两种液体的流动特性,以估计其磁性参数、霍尔系数、滑移系数、粘度、密度、高度、电导率和导热系数等主要参数。观察到,两个区域的温度升高是由导热系数比例引起的。传热系数在达到一定程度后减小,之后随着磁参量和霍尔参量的增大而增大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slip regime MHD 2-liquid plasma heat transfer flow with hall currents between parallel plates
The influence of the slip factor on the MHD 2-liquid heat transfer flow of ionized gases within a channel between two non-conducting plates with Hall currents is investigated theoretically. Slip conditions were used to obtain solutions for the velocity and temperature fields, as well as the heat transfer rates. The flow characteristics of the two liquids are studied for estimates of the leading parameters, for instance the magnetic parameter, Hall and slip factors, viscosity, density, height, electrical conductivity and the thermal conductivity ratios. It was observed that an upsurge in temperature in the two zones is caused by the thermal conductivity proportion. The rate of heat transfer coefficient diminishes up to a certain point, after that it starts to increase as the magnetic and Hall parameters increase
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1