{"title":"微生物联合体作为一种生物防治的选择","authors":"Christian David Vargas Baquero, Alba Marina Cotes","doi":"10.1080/07060661.2023.2262959","DOIUrl":null,"url":null,"abstract":"AbstractStromatinia cepivora, the causal agent of white rot, is responsible for 60-80% of economic losses in onion and garlic crops. This work aimed to select biological control agents (BCAs) to control white rot. Ten microorganisms were tested for hyperparasitic activity on S. cepivora sclerotia in garlic (Allium sativum). Bioassays consisted of pots filled with sterile soil and 50 sclerotia in a plastic Tulle bag. Four microorganisms were selected to compare their capability for degrade sclerotia on garlic. Our results showed that increasing degradation happened when Th034, Th035, Th003 and Bs006 were added to the pots containing garlic. Subsequently, three application techniques (seeds, seedlings at transplant, and seeds and transplant) were evaluated. Seven BCAs applied singly and in mixtures were evaluated in semi-field experiments for their ability to reduce white rot symptoms in onion plants in soil inoculated with 300 sclerotia per kilogram. The results indicated that efficacy was dependent on microrganism, mixture, and technique of application. The synergy factor showed that only two treatments have synergistic effects. In both cases, the mixture consisted of a strain of Bacillus and two species of Trichoderma (T. koningiopsis, T. atroviride) applied twice. In most cases, antagonistic interactions among BCAs were observed.Stromatinia cepivora, l’agent causal de la pourriture blanche, est responsable de 60 à 80 % des pertes financières relatives à la culture de l’oignon et de l’ail. Ces travaux visent à sélectionner des agents de lutte biologique (ALB) pour combattre la pourriture blanche. Dix microorganismes ont été testés pour leur activité hyperparasitique envers les sclérotes de S. cepivora chez l’ail (Allium sativum). Des biotests consistaient à placer dans des pots du sol stérile et 50 sclérotes contenus dans des sachets en tulle de plastique. Quatre microorganismes ont été sélectionnés afin de comparer leur capacité à dégrader les sclérotes sur l’ail. Nos résultats ont montré que davantage de dégradation se produisait lorsque Th034, Th035, Th003 et Bs006 étaient ajoutés aux pots contenant l’ail. Subséquemment, trois techniques d’application ont été évaluées (semences, plantules lors de la transplantation et semences et transplantation). Sept ALB appliqués seuls ou combinés ont été évalués au cours d’expériences menées dans des conditions semi-naturelles en vue de déterminer leur capacité à réduire les symptômes de la pourriture blanche chez l’oignon dans un sol inoculé avec 300 sclérotes par kilogramme. Les résultats ont indiqué que l’efficacité dépendait du microorganisme, de la combinaison et de la technique d’application. Le facteur de synergie a démontré que seuls deux traitements ont des effets synergiques. Dans les deux cas, la combinaison consistait en une souche de bacilles et deux espèces de Trichoderma (T. koningiopsis, T. atroviride) appliquées à deux reprises. Dans la plupart des cas, des interactions antagonistes entre les ALB ont été observées.KEYWORDS: antagonismBacillusbiocontrolStromatinia cepivoraTrichodermawhite rotKEYWORDS: MOTS CLÉSAntagonismebacilleslutte biologiquepourriture blancheStromatinia cepivoraTrichodermaDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was carried out with the financial support of the Colombian Corporation for Agricultural Research – AGROSAVIA. The authors thank to the Germplasm Bank of Microorganisms for supplying the biocontrol strains.Conflict of interestThe authors declare that there was no economic or financial interest that could be interpreted as a potential conflict of interest.Availability of data and materialThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.References Abbott WS 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol. 18(2):265–267. doi:10.1093/jee/18.2.265a. [Crossref], [Google Scholar] Abd-Elbaky A, El-Abeid S, Osman N. 2018. Effect of integration between vascular arbuscular mycorrhizal fungi and potassium silicate supplementation on controlling onion white rot. Egypt J Phytopathol. 46(1): 125–142. doi:10.21608/ejp.2018.87774. [Crossref], [Google Scholar] Backhouse D, Stewart, A. 1987. Anatomy and histochemistry of resting and germinating sclerotia of Sclerotium cepivorum. T Brit Mycol Soc. 89(4): 561–567. doi:10.1016/S0007-1536(87)80090-6. [Crossref], [Google Scholar] Barbison, LC. 2014 Analysis of three biological control agents and naturally-occurring fungal colonizers on the survival of sclerotia of Botrytis squamosa, Sclerotinia sclerotiorum and Sclerotium cepivorum [ master’s thesis]. Guelph (ON):University of Guelph. [Google Scholar] Bech L., Busk PK Lange L. 2015. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fung Genomic Biol. 4: 116. [Google Scholar] Bonciu E. 2020. Study regarding the cellular activity in garlic (A. sativum) bulbs affecting by Sclerotium cepivorum. Sci P Series A. Agron. LXIII(1): 186–191. [Google Scholar] CABI (2021). Stromatinia cepivora (white rot of onion and garlic). CAB International; [accessed 2022] Wallingford, UK. https://www.cabi.org/isc/datasheet/49145#toDistributionMaps. [Google Scholar] Castillo N. 2000 Aislamiento, identificación y selección de potenciales hongos antagonistas al hongo Sclerotium cepivorum Berk causante de la pudrición blanca de la cebolla de bulbo (AIIium cepa L.) [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Chien Y-C, Huang C-H 2020. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. null. 156(4): 995–1003. doi:10.1007/s10658-020-01947-5. [Crossref], [Google Scholar] Cimen I, Firing V, Sagir A. 2010. Determination of long-term effects of consecutive effective soil solarization with vesicular arbuscular mycorrhizal (VAM) on white rot disease (Sclerotium cepivorum Berk.) and yield of onion. Res Crop. 11(1): 109–117. [Google Scholar] Clarkson JP, Mead A, Payne T, Whipps JM 2004. Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. null. 53(3): 353–362. doi:10.1111/j.0032-0862.2004.01013.x. [Crossref], [Google Scholar] Clarkson JP, Payne T, Mead A, Whipps JM 2002. Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. null. 51(6): 735–745. doi:10.1046/j.1365-3059.2002.00787.x. [Crossref], [Google Scholar] Coley-Smith JR 1990. White rot disease of Allium: problems of soil-borne diseases in microcosm. null. 39:214–222. 2 10.1111/j.1365-3059.1990.tb02495.x [Crossref], [Google Scholar] Coley-Smith JR, King JE 1969. The production by species of Allium of alkyl sulphides and their effect on germination of sclerotia of Sclerotium cepivorum Berk. Ann Appl Biol. 64(2):289–301. doi:10.1111/j.1744-7348.1969.tb02879.x. [Crossref] [Web of Science ®], [Google Scholar] Cotes AM, Fargetton X, Köhl J, Díaz García A, Gómez Álvarez MI, Grijalba Bernal EP, et al. 2018 Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. 2 Cotes AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria. Spanish. [Crossref], [Google Scholar] Cotes AM, Lepoivre P, Semal J 1996. Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. null. 102(5):497–506. doi:10.1007/bf01877144. [Crossref], [Google Scholar] Cotes Prado AM, Beltrán Acosta CR, Velandia M, Carlos A, Villamizar Rivero LF, Gómez IM, Grijalba Bernal EP, et al. 2011. Trichoderma koningiopsis Th003 alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa. Cotes Prado AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria – Corpoica and Universidad de Cordoba, GANACOR. Spanish. [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2002. Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biol Biochem. 34(7):1037–1045. doi:10.1016/S0038-0717(02)00037-8. [Crossref] [Web of Science ®], [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2005. Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. null. 111(2):101–112. doi:10.1007/s10658-004-1420-0. [Crossref], [Google Scholar] Crowe F, Hall D. 1980. Soil temperature and moisture effects on sclerotium germination and infection of onion seedlings by Sclerotium cepivorum. Phytopathol. 70(1):74–78. [Crossref] [Web of Science ®], [Google Scholar] Crowe FJ. 2008. White Rot. In: Schwartz HF, Krishna Mohan S, editors. Compendium of Onion and Garlic Diseases and Pests. St. Paul (MN): The American Phytopathological Society; p. 22–26. [Google Scholar] Crowe FJ, Darnell T, Thornton M, Davis M, McGrath D, Koepsell P, et al. 1993. White rot control studies show promise of better future. Onion World. 9: 22–25. [Google Scholar] Díaz-García A, García-Riaño J, Zapata-Narvaez J. 2015. Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Adv Biosci Biotechnol. 6: 302–310. doi:10.4236/abb.2015.64029. [Crossref], [Google Scholar] Elshahawy IE, Morsy AA, Abd-El-Kareem F, Saied NM. 2019. Reduction of Stromatinia cepivora inocula and control of white rot disease in onion and garlic crops by repeated soil applications with sclerotial germination stimulants. Heliyon. 5(1): e01168. doi:10.1016/j.heliyon.2019.e01168. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Elshahawy IE, Saied N, Abd-El-Kareem F, Morsy A. 2017. Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder. Arch Phytopathol Plant Prot. 50(3–4): 150–166. doi:10.1080/03235408.2016.1276423. [Taylor & Francis Online], [Google Scholar] Elshahawy IE, Saied NM 2021. Reduced sclerotial viability of Stromatinia cepivora and control of white rot disease of onion and garlic by means of soil bio-solarization. null. 160(3): 519–540. doi:10.1007/s10658-021-02260-5. [Crossref], [Google Scholar] Elshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA. 2018. Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. J Plant Pathol. 100(3): 493–503. doi:10.1007/s42161-018-0113-z. [Crossref] [Web of Science ®], [Google Scholar] EPA. 2009. Pesticide Product Label, DADS™ BIOSTIMULANT. US Environmental Protection Agency. 2749–2526. Washington (DC); p. 1–3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/002749-00526-20091125.pdf. [Google Scholar] EPA. 2012. Pesticide Product Label, Quilt Xcel™ US Environmental Protection Agency. 100 1324. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-01324-20120810.pdf. [Google Scholar] EPA. 2013. Pesticide Product Label, Medallion® Fungicide. US Environmental Protection Agency 100-769. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-00769-20130506.pdf. [Google Scholar] EPA. 2016. Pesticide Product Label, FD Tebuconazole 3.6F. US Environmental Protection Agency 91232-3. Washington (DC); p. 1–35 3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/091232-00003-20161215.pdf. [Google Scholar] EPA. 2018. Pesticide Product Label, TIMOREX GOLD. US Environmental Protection Agency. 86182-1. Washington (DC). p. 1–33 2. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/086182-00001-20180531.pdf. [Google Scholar] Franco-Cirigliano MN, Rezende RC, Gravina-Oliveira MP, Pereira PHF, do Nascimento RP, Bon EPS, et al. 2013. Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Res Int. 2013: 584207. doi:10.1155/2013/584207. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Fuga CAG, Lopes EA, Vieira BS, da Cunha WV. 2016. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. Científica. 44(4): 526–531. doi:10.15361/1984-5529.2016v44n4p526-531. [Crossref], [Google Scholar] Galal A-MM. 2006. Induction of systemic acquired resistance in cucumber plant against Cucumber Mosaic Cucumovirus by local Streptomyces strains. Plant Pathol J. 5: 343–349. [Crossref], [Google Scholar] Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al. 2012. Generalized Linear Mixed Models. In: Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al., editors. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. US: American Society of Agronomy. doi:10.2134/2012.generalized-linear-mixed-models.c5; p. 109–197. [Crossref], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Dinoor A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathol. 91(7):621–627. doi:10.1094/PHYTO.2001.91.7.621. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathol. 92(9):976–985. doi:10.1094/PHYTO.2002.92.9.976. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Haggag WM, Nofal MA. 2006. Improving the biological control of Botryodiplodia disease on some Annona cultivars using single or multi-bioagents in Egypt. Biol Control. 38(3):341–349. doi:10.1016/j.biocontrol.2006.02.010. [Crossref] [Web of Science ®], [Google Scholar] Haichar FZ, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biol Biochem. 77:69–80. doi:10.1016/j.soilbio.2014.06.017. [Crossref] [Web of Science ®], [Google Scholar] Han KS, Soo Sang H, Ki Heung H, Jong Tae K, Buyng Ryun K, Chang Kook C, et al. 2013. Biological control of white rot in garlic using Burkholderia pyrrocinia CAB08106-4. Res in Plant Dis. 19(1):21–24. doi:10.5423/RPD.2013.19.1.021. [Crossref], [Google Scholar] Harper GE. 2001 Aspects of the biology of the sclerotia of Sclerotium cepivorum [ dissertation]. Canterbury (NZL): Lincoln University [Google Scholar] Huang J-W, Shih H-D, Huang H-C, Chung W-C. 2007. Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Can J Plant Pathol. 29(3):261–267. doi:10.1080/07060660709507468. [Taylor & Francis Online] [Web of Science ®], [Google Scholar] Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ, et al. 2016. Antifungal Streptomyces spp. associated with the infructescences of Protea spp. in South Africa. Front Microbiol. 7:1657. doi:10.3389/fmicb.2016.01657. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA 2020. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep. 10(1):6857. doi:10.1038/s41598-020-63689-y. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Jaimes Suárez YY, Moreno Velandia CA, Cotes Prado AM. 2009. Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta biol.Colomb. 14(3):10. Spanish. [Google Scholar] Kashyap PL, Rai P, Srivastava AK, Kumar S 2017. Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol. 33(8):155. doi:10.1007/s11274-017-2319-1. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Katan J. 2000. Physical and cultural methods for the management of soil-borne pathogens. Crop Prot. 19(8):725–731. doi:10.1016/S0261-2194(00)00096-X. [Crossref] [Web of Science ®], [Google Scholar] Kaur J, Munshi GD, Singh RS, Koch E. 2005. Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. J Phytopathol. 153(5):274–279. doi:10.1111/j.1439-0434.2005.00969.x. [Crossref] [Web of Science ®], [Google Scholar] Kim H, Kim HT, Min YG. 2015. Control activities of fungicides against garlic white rot caused by Sclerotium cepivorum. Korean J Pesticide Sci. 19(1):64–70. doi:10.7585/kjps.2015.19.1.64. [Crossref], [Google Scholar] Knudson C, Geyer CJ, Benson S. 2012. R [software]. v3.5.1. Package ‘glmm’. Vienna: R Foundation for Statistical Computing. [accessed 2021 Feb 2]. [Google Scholar] Lee YH, Kim ES, Heo SJ, Youn HR, Han JH, Kim KS, et al. 2018. C-1 : Bacillus siamensis H30-3 has antifungal activities against phytopathogenic fungi. Mycological Society News, 30(1):94–94. [Google Scholar] Leta A, Selvaraj T, Ambo P. 2013. Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). J Plant Pathol Microbiol. 4(1):159. doi:10.4172/2157-7471.1000159 [Crossref], [Google Scholar] Levy Y, Benderly M, Cohen Y, Gisi U, Bassand D. 1986. The joint action of fungicides in mixtures: comparison of two methods for synergy calculation. EPPO Bull. 16(4): 651–657. doi:10.1111/j.1365-2338.1986.tb00338.x. [Crossref], [Google Scholar] Mahady GB, Matsuura H, Pendland SL. 2001. Allixin, a phytoalexin from garlic, inhibits the growth of Helicobacter pylori in vitro. Am J Gastroenterol. 96:3454. doi:10.1111/j.1572-0241.2001.05351.x. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mahdizadehnaraghi R, Heydari A, Zamanizadeh HR, Rezaee S, Nikan J. 2015. Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. J Plant Prot Res. 55(2):136–141. doi:10.1515/jppr-2015-0017. [Crossref], [Google Scholar] McLean KL, Swaminathan J, Stewart A 2001. Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soils. Soil Biol Biochem. 33(2):137–143. doi:10.1016/S0038-0717(00)00119-X. [Crossref] [Web of Science ®], [Google Scholar] Mesa P, García C, Cotes AM. 2017. En búsqueda de una alternativa de manejo del camanduleo de la papa ocasionada por Spongospora subterranea. Revista Colombiana de Ciencias Hortícolas. 11, 378–386. doi:10.17584/rcch.2017v11i2.6150. Spanish. [Crossref], [Google Scholar] Mesa Quijano EP. 2016. Efecto de microorganismos biocontroladores y aditivos orgánicos sobre el camanduleo de la papa ocasionada por Spongospora subterranea f. sp. subterranea. [ master’s thesis]. Bogota (Col): Universidad Nacional de Colombia-Sede Bogotá. Spanish [Google Scholar] Mesterházy A, Tóth B, Varga M, Bartók T, Szabó-Hevér A, Farády L, et al. 2011. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins. 3(11):1453–1483. doi:10.3390/toxins3111453. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Metcalf DA. 1997. Biological control of Sclerotium cepivorum Berk.(onion white root rot) using Trichoderma koningii Oudem. [ dissertation]. Hobart (AU): University of Tasmania [Google Scholar] Minchev Z, Kostenko O, Soler R, Pozo MJ. 2021. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front Plant Sci. 12:756368. doi: 10.3389/fpls.2021.756368. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mohd-Yusoff J, Alias Z, Simarani K. 2016. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl Biochem Microbiol. 52(3):256–262. doi:10.1134/S0003683816030133. [Crossref] [Web of Science ®], [Google Scholar] Moreno-Velandia CA, Izquierdo-García LF, Ongena M, Kloepper JW, Cotes AM. 2019. Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant Soil. 435(1): 39–55. doi:10.1007/s11104-018-3866-4. [Crossref] [Web of Science ®], [Google Scholar] Moreno C, Kloepper J, Ongena M, Cotes AM. 2014. Biotic factors involved in biological control activity of Bacillus amyloliquefaciens (Bs006) against Fusarium oxysporum in Cape gooseberry (Physalis peruviana). IOBC-WPRS Bull. 115:129–136. [Google Scholar] Moreno CA, Castillo F, González A, Bernal D, Jaimes Y, Chaparro M, González C, Rodriguez F, Restrepo S, Cotes AM, et al. 2009. Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol. 74(2):111–120. doi:10.1016/j.pmpp.2009.10.001. [Crossref] [Web of Science ®], [Google Scholar] Nawrocki A. 2016. Effectiveness of the biological control of garlic (Allium sativum L.). Acta Hortic Regiotec. 19(1):15–17. [Crossref], [Google Scholar] Palmieri D, Vitullo D, De Curtis F, Lima G. 2017. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant Soil. 412(1):425–439. doi:10.1007/s11104-016-3080-1. [Crossref] [Web of Science ®], [Google Scholar] Paris A. 2000. Aislamiento, identificación y selección de bacterias y levaduras biocontroladores del fitopatógeno Sclerotium cepivorum Berk., causante de la pudrición blanca en cebolla de bulbo Allium cepa Linneo. [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Paris A, Cotes AM. 2002. Biological control of Sclerotium cepivorum in onion with a yeast and bacteria. IOBC Bull. 25(10):311–314. [Google Scholar] Pérez-Moreno L, Villalpando-Mendiola JJ, Castañeda-Cabrera C, Ramírez-Malagón R. 2009. Sensibilidad in vitro de Sclerotium rolfsii Saccardo, a Los Fungicidas Comúnmente Usados Para su Combate. Revista mexicana de fitopatología. 27:11–17. Spanish. [Google Scholar] Pontin M, Bottini R, Burba JL, Piccoli P. 2015. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochem. 115:152–160. doi:10.1016/j.phytochem.2015.02.003. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Qian M, Dung J. 2017. Efficacy of organic sulfur compounds from garlic/onion on white rot Sclerotia germination. Oregon State University, Corvallis, OR. 97330. [Google Scholar] Rajasekhar L, Sain SK, Divya J. 2016. Evaluation of microbial consortium for plant health management of chick pea. J Appl Biol Pharm Tech. 7:115–121. [Google Scholar] Rivera-Méndez W, Obregón M, Morán-Diez, ME, Hermosa R, Monte E. 2020. Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control. 141:104145. doi:10.1016/j.biocontrol.2019.104145. [Crossref] [Web of Science ®], [Google Scholar] Rivera-Méndez W, Zúñiga-Vega C, Brenes-Madriz JA. 2016. Control biológico del hongo Sclerotium cepivorum utilizando Trichoderma asperellum en el cultivo del ajo en Costa Rica. Revista Tecnología en Marcha. 41–50. doi:10.18845/tm.v29i7.2704. Spanish. [Crossref], [Google Scholar] Rojas V, Ulacio D, Jiménez MA, Perdomo W, Pardo A. 2010. Epidemiological analysis and control of Sclerotium cepivorum Berk. and white rot disease in garlic (Allium sativum L.). Bioagro. 22(3):185–192. [Google Scholar] Santos A, García M, Cotes AM, Villamizar L. 2012. Efecto de la formulación sobre la vida útil de bioplaguicidas a base de dos aislamientos colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología. 29(3):150–156. doi:10.1016/j.riam.2011.11.002. Spanish. [Crossref], [Google Scholar] Shahid M, Pandey S, Srivastava M, Kumar V, Singh A, Trivedi S, et al. 2016. Characterization and identification of different strains of Trichoderma species using bio-molecular techniques. J Pure Appl Microbiol. 10(1):769–787. [Google Scholar] Shalaby ME, Ghoniem KE, El-Diehi MA. 2013. Biological and fungicidal antagonism of Sclerotium cepivorum for controlling onion white rot disease. Ann of Microbiol. 63(4):1579–1589. doi:10.1007/s13213-013-0621-1. [Crossref] [Web of Science ®], [Google Scholar] Shih H-D, Liu Y-C, Hsu F-L, Mulabagal V, Dodda R, Huang J-W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agri Food Chem. 51(1):95–99. doi:10.1021/jf025879b. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Smolinska U. 2000. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J Phytopathol. 148(6):343–349. doi:10.1046/j.1439-0434.2000.00519.x. [Crossref] [Web of Science ®], [Google Scholar] Thakkar A, Saraf M. 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Prot. 48(6):459–474. doi:10.1080/03235408.2014.893638. [Taylor & Francis Online], [Google Scholar] Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ. 2014. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotech Lett. 36(10):2095–2101. doi:10.1007/s10529-014-1583-5. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Ulacio D, Zavaleta-Mejía E, Martínez-Garza A, Pedroza-Sandoval A, México-Texcoco C, Edo de México M. 2006. Strategies for management of Sclerotium cepivorum Berk. in garlic. J Plant Pathol. 88(3):253–261. doi:10.4454/jpp.v88i3.870. [Crossref] [Web of Science ®], [Google Scholar] Urbina-Salazar AR, Inca-Torres AR, Falcón-García G, Carbonero-Aguilar P, Rodríguez-Morgado B, del Campo, JA, et al. 2018. Chitinase production by Trichoderma harzianum grown on a chitin-rich mushroom byproduct formulated medium. Waste Biomass Valori. 10 (1): 2915–2923. doi:10.1007/s12649-018-0328-4. [Crossref], [Google Scholar] Uribe Gutierrez LA, Zapata Narvaez JA, Villamizar Rivero LF, Diaz Garcia A, Gomez Alvarez MI, Cotes Prado AM, et al. 2013. Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC-WPRS Bull. ISSN: 1027-3115 [Google Scholar] Utkhede R, Rahe J. 1979. Wet-sieving floatation technique for isolation of sclerotia of Sclerotium cepivorum from muck soil. Phytopathol. 69(295): e297. [Google Scholar] Valadares-Inglis MC, Martins I, da Silva JP, de Mello SCM. 2018. Seleção in vitro de linhagens de Trichoderma para controle da podridão-branca do alho e da cebola’ Boletim de pesquisa e desenvolvimento. Brasília(BRA): Embrapa. Portuguese. [Google Scholar] Vig AP, Rampal G, Thind TS, Arora S. 2009. Bio-protective effects of glucosinolates – a review. LWT Food Sci Technol. 42(10):1561–1572. doi:10.1016/j.lwt.2009.05.023. [Crossref] [Web of Science ®], [Google Scholar] Villalta ON, Wite D, Porter IJ, McLean KL, Stewart A, Hunt J 2012. Integrated Control of Onion White Rot on Spring Onions Using Diallyl Disulphide, Fungicides and Biocontrols. Acta Hortic. 944: 63–71. 944 10.17660/ActaHortic.2012.944.8 [Crossref], [Google Scholar] Zamora E. 2016. El cultivo de la cebolla. Serie guías–producción de hortalizas 34(25): 1–7. Spanish. [Google Scholar] Zewid T, Fininsa C, Sakhuja PK 2007. Management of white rot (Sclerotium cepivorum) of garlic using fungicides in Ethiopia. Crop Prot. 26(6): 856–866. doi:10.1016/j.cropro.2006.08.017. [Crossref] [Web of Science ®], [Google Scholar]Additional informationFundingThe work was supported by the Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) .","PeriodicalId":9468,"journal":{"name":"Canadian Journal of Plant Pathology","volume":"39 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial consortia as an option for biocontrol of <i>Stromatinia cepivora</i>\",\"authors\":\"Christian David Vargas Baquero, Alba Marina Cotes\",\"doi\":\"10.1080/07060661.2023.2262959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractStromatinia cepivora, the causal agent of white rot, is responsible for 60-80% of economic losses in onion and garlic crops. This work aimed to select biological control agents (BCAs) to control white rot. Ten microorganisms were tested for hyperparasitic activity on S. cepivora sclerotia in garlic (Allium sativum). Bioassays consisted of pots filled with sterile soil and 50 sclerotia in a plastic Tulle bag. Four microorganisms were selected to compare their capability for degrade sclerotia on garlic. Our results showed that increasing degradation happened when Th034, Th035, Th003 and Bs006 were added to the pots containing garlic. Subsequently, three application techniques (seeds, seedlings at transplant, and seeds and transplant) were evaluated. Seven BCAs applied singly and in mixtures were evaluated in semi-field experiments for their ability to reduce white rot symptoms in onion plants in soil inoculated with 300 sclerotia per kilogram. The results indicated that efficacy was dependent on microrganism, mixture, and technique of application. The synergy factor showed that only two treatments have synergistic effects. In both cases, the mixture consisted of a strain of Bacillus and two species of Trichoderma (T. koningiopsis, T. atroviride) applied twice. In most cases, antagonistic interactions among BCAs were observed.Stromatinia cepivora, l’agent causal de la pourriture blanche, est responsable de 60 à 80 % des pertes financières relatives à la culture de l’oignon et de l’ail. Ces travaux visent à sélectionner des agents de lutte biologique (ALB) pour combattre la pourriture blanche. Dix microorganismes ont été testés pour leur activité hyperparasitique envers les sclérotes de S. cepivora chez l’ail (Allium sativum). Des biotests consistaient à placer dans des pots du sol stérile et 50 sclérotes contenus dans des sachets en tulle de plastique. Quatre microorganismes ont été sélectionnés afin de comparer leur capacité à dégrader les sclérotes sur l’ail. Nos résultats ont montré que davantage de dégradation se produisait lorsque Th034, Th035, Th003 et Bs006 étaient ajoutés aux pots contenant l’ail. Subséquemment, trois techniques d’application ont été évaluées (semences, plantules lors de la transplantation et semences et transplantation). Sept ALB appliqués seuls ou combinés ont été évalués au cours d’expériences menées dans des conditions semi-naturelles en vue de déterminer leur capacité à réduire les symptômes de la pourriture blanche chez l’oignon dans un sol inoculé avec 300 sclérotes par kilogramme. Les résultats ont indiqué que l’efficacité dépendait du microorganisme, de la combinaison et de la technique d’application. Le facteur de synergie a démontré que seuls deux traitements ont des effets synergiques. Dans les deux cas, la combinaison consistait en une souche de bacilles et deux espèces de Trichoderma (T. koningiopsis, T. atroviride) appliquées à deux reprises. Dans la plupart des cas, des interactions antagonistes entre les ALB ont été observées.KEYWORDS: antagonismBacillusbiocontrolStromatinia cepivoraTrichodermawhite rotKEYWORDS: MOTS CLÉSAntagonismebacilleslutte biologiquepourriture blancheStromatinia cepivoraTrichodermaDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was carried out with the financial support of the Colombian Corporation for Agricultural Research – AGROSAVIA. The authors thank to the Germplasm Bank of Microorganisms for supplying the biocontrol strains.Conflict of interestThe authors declare that there was no economic or financial interest that could be interpreted as a potential conflict of interest.Availability of data and materialThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.References Abbott WS 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol. 18(2):265–267. doi:10.1093/jee/18.2.265a. [Crossref], [Google Scholar] Abd-Elbaky A, El-Abeid S, Osman N. 2018. Effect of integration between vascular arbuscular mycorrhizal fungi and potassium silicate supplementation on controlling onion white rot. Egypt J Phytopathol. 46(1): 125–142. doi:10.21608/ejp.2018.87774. [Crossref], [Google Scholar] Backhouse D, Stewart, A. 1987. Anatomy and histochemistry of resting and germinating sclerotia of Sclerotium cepivorum. T Brit Mycol Soc. 89(4): 561–567. doi:10.1016/S0007-1536(87)80090-6. [Crossref], [Google Scholar] Barbison, LC. 2014 Analysis of three biological control agents and naturally-occurring fungal colonizers on the survival of sclerotia of Botrytis squamosa, Sclerotinia sclerotiorum and Sclerotium cepivorum [ master’s thesis]. Guelph (ON):University of Guelph. [Google Scholar] Bech L., Busk PK Lange L. 2015. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fung Genomic Biol. 4: 116. [Google Scholar] Bonciu E. 2020. Study regarding the cellular activity in garlic (A. sativum) bulbs affecting by Sclerotium cepivorum. Sci P Series A. Agron. LXIII(1): 186–191. [Google Scholar] CABI (2021). Stromatinia cepivora (white rot of onion and garlic). CAB International; [accessed 2022] Wallingford, UK. https://www.cabi.org/isc/datasheet/49145#toDistributionMaps. [Google Scholar] Castillo N. 2000 Aislamiento, identificación y selección de potenciales hongos antagonistas al hongo Sclerotium cepivorum Berk causante de la pudrición blanca de la cebolla de bulbo (AIIium cepa L.) [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Chien Y-C, Huang C-H 2020. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. null. 156(4): 995–1003. doi:10.1007/s10658-020-01947-5. [Crossref], [Google Scholar] Cimen I, Firing V, Sagir A. 2010. Determination of long-term effects of consecutive effective soil solarization with vesicular arbuscular mycorrhizal (VAM) on white rot disease (Sclerotium cepivorum Berk.) and yield of onion. Res Crop. 11(1): 109–117. [Google Scholar] Clarkson JP, Mead A, Payne T, Whipps JM 2004. Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. null. 53(3): 353–362. doi:10.1111/j.0032-0862.2004.01013.x. [Crossref], [Google Scholar] Clarkson JP, Payne T, Mead A, Whipps JM 2002. Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. null. 51(6): 735–745. doi:10.1046/j.1365-3059.2002.00787.x. [Crossref], [Google Scholar] Coley-Smith JR 1990. White rot disease of Allium: problems of soil-borne diseases in microcosm. null. 39:214–222. 2 10.1111/j.1365-3059.1990.tb02495.x [Crossref], [Google Scholar] Coley-Smith JR, King JE 1969. The production by species of Allium of alkyl sulphides and their effect on germination of sclerotia of Sclerotium cepivorum Berk. Ann Appl Biol. 64(2):289–301. doi:10.1111/j.1744-7348.1969.tb02879.x. [Crossref] [Web of Science ®], [Google Scholar] Cotes AM, Fargetton X, Köhl J, Díaz García A, Gómez Álvarez MI, Grijalba Bernal EP, et al. 2018 Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. 2 Cotes AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria. Spanish. [Crossref], [Google Scholar] Cotes AM, Lepoivre P, Semal J 1996. Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. null. 102(5):497–506. doi:10.1007/bf01877144. [Crossref], [Google Scholar] Cotes Prado AM, Beltrán Acosta CR, Velandia M, Carlos A, Villamizar Rivero LF, Gómez IM, Grijalba Bernal EP, et al. 2011. Trichoderma koningiopsis Th003 alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa. Cotes Prado AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria – Corpoica and Universidad de Cordoba, GANACOR. Spanish. [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2002. Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biol Biochem. 34(7):1037–1045. doi:10.1016/S0038-0717(02)00037-8. [Crossref] [Web of Science ®], [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2005. Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. null. 111(2):101–112. doi:10.1007/s10658-004-1420-0. [Crossref], [Google Scholar] Crowe F, Hall D. 1980. Soil temperature and moisture effects on sclerotium germination and infection of onion seedlings by Sclerotium cepivorum. Phytopathol. 70(1):74–78. [Crossref] [Web of Science ®], [Google Scholar] Crowe FJ. 2008. White Rot. In: Schwartz HF, Krishna Mohan S, editors. Compendium of Onion and Garlic Diseases and Pests. St. Paul (MN): The American Phytopathological Society; p. 22–26. [Google Scholar] Crowe FJ, Darnell T, Thornton M, Davis M, McGrath D, Koepsell P, et al. 1993. White rot control studies show promise of better future. Onion World. 9: 22–25. [Google Scholar] Díaz-García A, García-Riaño J, Zapata-Narvaez J. 2015. Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Adv Biosci Biotechnol. 6: 302–310. doi:10.4236/abb.2015.64029. [Crossref], [Google Scholar] Elshahawy IE, Morsy AA, Abd-El-Kareem F, Saied NM. 2019. Reduction of Stromatinia cepivora inocula and control of white rot disease in onion and garlic crops by repeated soil applications with sclerotial germination stimulants. Heliyon. 5(1): e01168. doi:10.1016/j.heliyon.2019.e01168. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Elshahawy IE, Saied N, Abd-El-Kareem F, Morsy A. 2017. Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder. Arch Phytopathol Plant Prot. 50(3–4): 150–166. doi:10.1080/03235408.2016.1276423. [Taylor & Francis Online], [Google Scholar] Elshahawy IE, Saied NM 2021. Reduced sclerotial viability of Stromatinia cepivora and control of white rot disease of onion and garlic by means of soil bio-solarization. null. 160(3): 519–540. doi:10.1007/s10658-021-02260-5. [Crossref], [Google Scholar] Elshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA. 2018. Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. J Plant Pathol. 100(3): 493–503. doi:10.1007/s42161-018-0113-z. [Crossref] [Web of Science ®], [Google Scholar] EPA. 2009. Pesticide Product Label, DADS™ BIOSTIMULANT. US Environmental Protection Agency. 2749–2526. Washington (DC); p. 1–3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/002749-00526-20091125.pdf. [Google Scholar] EPA. 2012. Pesticide Product Label, Quilt Xcel™ US Environmental Protection Agency. 100 1324. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-01324-20120810.pdf. [Google Scholar] EPA. 2013. Pesticide Product Label, Medallion® Fungicide. US Environmental Protection Agency 100-769. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-00769-20130506.pdf. [Google Scholar] EPA. 2016. Pesticide Product Label, FD Tebuconazole 3.6F. US Environmental Protection Agency 91232-3. Washington (DC); p. 1–35 3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/091232-00003-20161215.pdf. [Google Scholar] EPA. 2018. Pesticide Product Label, TIMOREX GOLD. US Environmental Protection Agency. 86182-1. Washington (DC). p. 1–33 2. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/086182-00001-20180531.pdf. [Google Scholar] Franco-Cirigliano MN, Rezende RC, Gravina-Oliveira MP, Pereira PHF, do Nascimento RP, Bon EPS, et al. 2013. Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Res Int. 2013: 584207. doi:10.1155/2013/584207. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Fuga CAG, Lopes EA, Vieira BS, da Cunha WV. 2016. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. Científica. 44(4): 526–531. doi:10.15361/1984-5529.2016v44n4p526-531. [Crossref], [Google Scholar] Galal A-MM. 2006. Induction of systemic acquired resistance in cucumber plant against Cucumber Mosaic Cucumovirus by local Streptomyces strains. Plant Pathol J. 5: 343–349. [Crossref], [Google Scholar] Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al. 2012. Generalized Linear Mixed Models. In: Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al., editors. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. US: American Society of Agronomy. doi:10.2134/2012.generalized-linear-mixed-models.c5; p. 109–197. [Crossref], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Dinoor A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathol. 91(7):621–627. doi:10.1094/PHYTO.2001.91.7.621. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathol. 92(9):976–985. doi:10.1094/PHYTO.2002.92.9.976. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Haggag WM, Nofal MA. 2006. Improving the biological control of Botryodiplodia disease on some Annona cultivars using single or multi-bioagents in Egypt. Biol Control. 38(3):341–349. doi:10.1016/j.biocontrol.2006.02.010. [Crossref] [Web of Science ®], [Google Scholar] Haichar FZ, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biol Biochem. 77:69–80. doi:10.1016/j.soilbio.2014.06.017. [Crossref] [Web of Science ®], [Google Scholar] Han KS, Soo Sang H, Ki Heung H, Jong Tae K, Buyng Ryun K, Chang Kook C, et al. 2013. Biological control of white rot in garlic using Burkholderia pyrrocinia CAB08106-4. Res in Plant Dis. 19(1):21–24. doi:10.5423/RPD.2013.19.1.021. [Crossref], [Google Scholar] Harper GE. 2001 Aspects of the biology of the sclerotia of Sclerotium cepivorum [ dissertation]. Canterbury (NZL): Lincoln University [Google Scholar] Huang J-W, Shih H-D, Huang H-C, Chung W-C. 2007. Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Can J Plant Pathol. 29(3):261–267. doi:10.1080/07060660709507468. [Taylor & Francis Online] [Web of Science ®], [Google Scholar] Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ, et al. 2016. Antifungal Streptomyces spp. associated with the infructescences of Protea spp. in South Africa. Front Microbiol. 7:1657. doi:10.3389/fmicb.2016.01657. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA 2020. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep. 10(1):6857. doi:10.1038/s41598-020-63689-y. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Jaimes Suárez YY, Moreno Velandia CA, Cotes Prado AM. 2009. Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta biol.Colomb. 14(3):10. Spanish. [Google Scholar] Kashyap PL, Rai P, Srivastava AK, Kumar S 2017. Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol. 33(8):155. doi:10.1007/s11274-017-2319-1. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Katan J. 2000. Physical and cultural methods for the management of soil-borne pathogens. Crop Prot. 19(8):725–731. doi:10.1016/S0261-2194(00)00096-X. [Crossref] [Web of Science ®], [Google Scholar] Kaur J, Munshi GD, Singh RS, Koch E. 2005. Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. J Phytopathol. 153(5):274–279. doi:10.1111/j.1439-0434.2005.00969.x. [Crossref] [Web of Science ®], [Google Scholar] Kim H, Kim HT, Min YG. 2015. Control activities of fungicides against garlic white rot caused by Sclerotium cepivorum. Korean J Pesticide Sci. 19(1):64–70. doi:10.7585/kjps.2015.19.1.64. [Crossref], [Google Scholar] Knudson C, Geyer CJ, Benson S. 2012. R [software]. v3.5.1. Package ‘glmm’. Vienna: R Foundation for Statistical Computing. [accessed 2021 Feb 2]. [Google Scholar] Lee YH, Kim ES, Heo SJ, Youn HR, Han JH, Kim KS, et al. 2018. C-1 : Bacillus siamensis H30-3 has antifungal activities against phytopathogenic fungi. Mycological Society News, 30(1):94–94. [Google Scholar] Leta A, Selvaraj T, Ambo P. 2013. Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). J Plant Pathol Microbiol. 4(1):159. doi:10.4172/2157-7471.1000159 [Crossref], [Google Scholar] Levy Y, Benderly M, Cohen Y, Gisi U, Bassand D. 1986. The joint action of fungicides in mixtures: comparison of two methods for synergy calculation. EPPO Bull. 16(4): 651–657. doi:10.1111/j.1365-2338.1986.tb00338.x. [Crossref], [Google Scholar] Mahady GB, Matsuura H, Pendland SL. 2001. Allixin, a phytoalexin from garlic, inhibits the growth of Helicobacter pylori in vitro. Am J Gastroenterol. 96:3454. doi:10.1111/j.1572-0241.2001.05351.x. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mahdizadehnaraghi R, Heydari A, Zamanizadeh HR, Rezaee S, Nikan J. 2015. Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. J Plant Prot Res. 55(2):136–141. doi:10.1515/jppr-2015-0017. [Crossref], [Google Scholar] McLean KL, Swaminathan J, Stewart A 2001. Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soils. Soil Biol Biochem. 33(2):137–143. doi:10.1016/S0038-0717(00)00119-X. [Crossref] [Web of Science ®], [Google Scholar] Mesa P, García C, Cotes AM. 2017. En búsqueda de una alternativa de manejo del camanduleo de la papa ocasionada por Spongospora subterranea. Revista Colombiana de Ciencias Hortícolas. 11, 378–386. doi:10.17584/rcch.2017v11i2.6150. Spanish. [Crossref], [Google Scholar] Mesa Quijano EP. 2016. Efecto de microorganismos biocontroladores y aditivos orgánicos sobre el camanduleo de la papa ocasionada por Spongospora subterranea f. sp. subterranea. [ master’s thesis]. Bogota (Col): Universidad Nacional de Colombia-Sede Bogotá. Spanish [Google Scholar] Mesterházy A, Tóth B, Varga M, Bartók T, Szabó-Hevér A, Farády L, et al. 2011. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins. 3(11):1453–1483. doi:10.3390/toxins3111453. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Metcalf DA. 1997. Biological control of Sclerotium cepivorum Berk.(onion white root rot) using Trichoderma koningii Oudem. [ dissertation]. Hobart (AU): University of Tasmania [Google Scholar] Minchev Z, Kostenko O, Soler R, Pozo MJ. 2021. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front Plant Sci. 12:756368. doi: 10.3389/fpls.2021.756368. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mohd-Yusoff J, Alias Z, Simarani K. 2016. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl Biochem Microbiol. 52(3):256–262. doi:10.1134/S0003683816030133. [Crossref] [Web of Science ®], [Google Scholar] Moreno-Velandia CA, Izquierdo-García LF, Ongena M, Kloepper JW, Cotes AM. 2019. Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant Soil. 435(1): 39–55. doi:10.1007/s11104-018-3866-4. [Crossref] [Web of Science ®], [Google Scholar] Moreno C, Kloepper J, Ongena M, Cotes AM. 2014. Biotic factors involved in biological control activity of Bacillus amyloliquefaciens (Bs006) against Fusarium oxysporum in Cape gooseberry (Physalis peruviana). IOBC-WPRS Bull. 115:129–136. [Google Scholar] Moreno CA, Castillo F, González A, Bernal D, Jaimes Y, Chaparro M, González C, Rodriguez F, Restrepo S, Cotes AM, et al. 2009. Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol. 74(2):111–120. doi:10.1016/j.pmpp.2009.10.001. [Crossref] [Web of Science ®], [Google Scholar] Nawrocki A. 2016. Effectiveness of the biological control of garlic (Allium sativum L.). Acta Hortic Regiotec. 19(1):15–17. [Crossref], [Google Scholar] Palmieri D, Vitullo D, De Curtis F, Lima G. 2017. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant Soil. 412(1):425–439. doi:10.1007/s11104-016-3080-1. [Crossref] [Web of Science ®], [Google Scholar] Paris A. 2000. Aislamiento, identificación y selección de bacterias y levaduras biocontroladores del fitopatógeno Sclerotium cepivorum Berk., causante de la pudrición blanca en cebolla de bulbo Allium cepa Linneo. [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Paris A, Cotes AM. 2002. Biological control of Sclerotium cepivorum in onion with a yeast and bacteria. IOBC Bull. 25(10):311–314. [Google Scholar] Pérez-Moreno L, Villalpando-Mendiola JJ, Castañeda-Cabrera C, Ramírez-Malagón R. 2009. Sensibilidad in vitro de Sclerotium rolfsii Saccardo, a Los Fungicidas Comúnmente Usados Para su Combate. Revista mexicana de fitopatología. 27:11–17. Spanish. [Google Scholar] Pontin M, Bottini R, Burba JL, Piccoli P. 2015. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochem. 115:152–160. doi:10.1016/j.phytochem.2015.02.003. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Qian M, Dung J. 2017. Efficacy of organic sulfur compounds from garlic/onion on white rot Sclerotia germination. Oregon State University, Corvallis, OR. 97330. [Google Scholar] Rajasekhar L, Sain SK, Divya J. 2016. Evaluation of microbial consortium for plant health management of chick pea. J Appl Biol Pharm Tech. 7:115–121. [Google Scholar] Rivera-Méndez W, Obregón M, Morán-Diez, ME, Hermosa R, Monte E. 2020. Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control. 141:104145. doi:10.1016/j.biocontrol.2019.104145. [Crossref] [Web of Science ®], [Google Scholar] Rivera-Méndez W, Zúñiga-Vega C, Brenes-Madriz JA. 2016. Control biológico del hongo Sclerotium cepivorum utilizando Trichoderma asperellum en el cultivo del ajo en Costa Rica. Revista Tecnología en Marcha. 41–50. doi:10.18845/tm.v29i7.2704. Spanish. [Crossref], [Google Scholar] Rojas V, Ulacio D, Jiménez MA, Perdomo W, Pardo A. 2010. Epidemiological analysis and control of Sclerotium cepivorum Berk. and white rot disease in garlic (Allium sativum L.). Bioagro. 22(3):185–192. [Google Scholar] Santos A, García M, Cotes AM, Villamizar L. 2012. Efecto de la formulación sobre la vida útil de bioplaguicidas a base de dos aislamientos colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología. 29(3):150–156. doi:10.1016/j.riam.2011.11.002. Spanish. [Crossref], [Google Scholar] Shahid M, Pandey S, Srivastava M, Kumar V, Singh A, Trivedi S, et al. 2016. Characterization and identification of different strains of Trichoderma species using bio-molecular techniques. J Pure Appl Microbiol. 10(1):769–787. [Google Scholar] Shalaby ME, Ghoniem KE, El-Diehi MA. 2013. Biological and fungicidal antagonism of Sclerotium cepivorum for controlling onion white rot disease. Ann of Microbiol. 63(4):1579–1589. doi:10.1007/s13213-013-0621-1. [Crossref] [Web of Science ®], [Google Scholar] Shih H-D, Liu Y-C, Hsu F-L, Mulabagal V, Dodda R, Huang J-W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agri Food Chem. 51(1):95–99. doi:10.1021/jf025879b. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Smolinska U. 2000. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J Phytopathol. 148(6):343–349. doi:10.1046/j.1439-0434.2000.00519.x. [Crossref] [Web of Science ®], [Google Scholar] Thakkar A, Saraf M. 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Prot. 48(6):459–474. doi:10.1080/03235408.2014.893638. [Taylor & Francis Online], [Google Scholar] Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ. 2014. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotech Lett. 36(10):2095–2101. doi:10.1007/s10529-014-1583-5. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Ulacio D, Zavaleta-Mejía E, Martínez-Garza A, Pedroza-Sandoval A, México-Texcoco C, Edo de México M. 2006. Strategies for management of Sclerotium cepivorum Berk. in garlic. J Plant Pathol. 88(3):253–261. doi:10.4454/jpp.v88i3.870. [Crossref] [Web of Science ®], [Google Scholar] Urbina-Salazar AR, Inca-Torres AR, Falcón-García G, Carbonero-Aguilar P, Rodríguez-Morgado B, del Campo, JA, et al. 2018. Chitinase production by Trichoderma harzianum grown on a chitin-rich mushroom byproduct formulated medium. Waste Biomass Valori. 10 (1): 2915–2923. doi:10.1007/s12649-018-0328-4. [Crossref], [Google Scholar] Uribe Gutierrez LA, Zapata Narvaez JA, Villamizar Rivero LF, Diaz Garcia A, Gomez Alvarez MI, Cotes Prado AM, et al. 2013. Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC-WPRS Bull. ISSN: 1027-3115 [Google Scholar] Utkhede R, Rahe J. 1979. Wet-sieving floatation technique for isolation of sclerotia of Sclerotium cepivorum from muck soil. Phytopathol. 69(295): e297. [Google Scholar] Valadares-Inglis MC, Martins I, da Silva JP, de Mello SCM. 2018. Seleção in vitro de linhagens de Trichoderma para controle da podridão-branca do alho e da cebola’ Boletim de pesquisa e desenvolvimento. Brasília(BRA): Embrapa. Portuguese. [Google Scholar] Vig AP, Rampal G, Thind TS, Arora S. 2009. Bio-protective effects of glucosinolates – a review. LWT Food Sci Technol. 42(10):1561–1572. doi:10.1016/j.lwt.2009.05.023. [Crossref] [Web of Science ®], [Google Scholar] Villalta ON, Wite D, Porter IJ, McLean KL, Stewart A, Hunt J 2012. Integrated Control of Onion White Rot on Spring Onions Using Diallyl Disulphide, Fungicides and Biocontrols. Acta Hortic. 944: 63–71. 944 10.17660/ActaHortic.2012.944.8 [Crossref], [Google Scholar] Zamora E. 2016. El cultivo de la cebolla. Serie guías–producción de hortalizas 34(25): 1–7. Spanish. [Google Scholar] Zewid T, Fininsa C, Sakhuja PK 2007. Management of white rot (Sclerotium cepivorum) of garlic using fungicides in Ethiopia. Crop Prot. 26(6): 856–866. doi:10.1016/j.cropro.2006.08.017. [Crossref] [Web of Science ®], [Google Scholar]Additional informationFundingThe work was supported by the Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) .\",\"PeriodicalId\":9468,\"journal\":{\"name\":\"Canadian Journal of Plant Pathology\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Plant Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07060661.2023.2262959\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07060661.2023.2262959","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
摘要洋葱和大蒜的经济损失中,有60-80%是白腐病的病原菌——头状旋流菌造成的。本研究旨在筛选生物防治剂(bca)防治大蒜白腐病。研究了10种微生物对大蒜白腐病菌核菌的超寄生活性。生物测定包括装满无菌土壤的花盆和一个塑料薄纱袋中的50个菌核。选择4种微生物,比较其对大蒜菌核的降解能力。结果表明,在大蒜罐中添加Th034、Th035、Th003和Bs006后,其降解作用增强。随后,对三种施用技术(种子、移栽苗、种子和移栽)进行了评价。在半田间试验中,评价了7种单独和混合施用bca在每公斤接种300菌核的土壤中减少洋葱白腐病的能力。结果表明,其效果与微生物、混合剂和施用技术有关。协同因子显示只有两种处理具有协同效应。在这两种情况下,混合物由一株芽孢杆菌和两种木霉(T. koningiopsis, T. atroviride)组成。在大多数情况下,观察到bca之间的拮抗相互作用。Stromatinia cepivora,是法国白色葡萄酒业的代理人,负责法国葡萄酒业和法国葡萄酒业的60%至80%的金融业务。生物变异因子(ALB)与生物变异因子(ALB)的对抗。三种微生物不能与洋葱(Allium sativum)进行比较,不能与洋葱(samum sativum)进行比较。德斯生物试验了一致的烟草、烟草、烟草、烟草、烟草、烟草、烟草、烟草、烟草、烟草、烟草、烟草、烟草和烟草。四分之一的微生物与<s:1> <s:1> <s:1> <s:1> <s:1>化学物质与<s:1>化学物质与<s:1>化学物质与<s:1>化学物质与<s:1>化学物质与<s:1>化学物质与<s:1>化学物质与<s:1>化学物质与与。号,结果一看,davantage de退化se produisait当Th034 Th035, Th003等Bs006 ajoutes是辅助锅contenant l 'ail。subssamuquement,三种技术的应用于samuquest, samuquest (semences, plantules de la transplantation, semences and transplantation)。9月1日- 9月1日- 9月1日- 9月1日- 9月1日- 9月1日- 9月1日- 9月1日- 9月1日- 9月1日- 9月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日- 3月1日从微生物学、组合学和技术应用学的角度来看,这是一种非常有效的方法。协同效应因素和其他因素影响协同效应。双生生,双生生的组合包括双生生和双生生的木霉(T. koningiopsis, T. atroviride)和双生生。随着时间的增加,这些相互作用的对抗将会发生,这些对抗将会发生。关键词:拮抗;芽孢杆菌;生物防治;乳酸菌;乳酸菌;在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。这项工作是在哥伦比亚农业研究公司- AGROSAVIA的财政支持下进行的。作者感谢微生物种质资源库提供的生物防治菌株。利益冲突作者声明,不存在可被解释为潜在利益冲突的经济或财务利益。数据和材料的可用性当前研究中使用和/或分析的数据集可根据通讯作者的合理要求提供。参考文献雅培WS 1925。计算杀虫剂效力的方法。中国生物医学工程学报,2016(2):444 - 444。doi: 10.1093 / jee / 18.2.265a。[Crossref], [Google Scholar]张建军,张建军,张建军,等。2018。杨建军,李建军。水硅酸钾与维管丛枝菌根真菌结合防治洋葱白腐病的研究[J] .植物酚类杂志。46(1):125-142。doi: 10.21608 / ejp.2018.87774。[Crossref], [Google Scholar],王晓明,王晓明。头孢菌核静息和萌发菌核的解剖和组织化学。[j] .中国生物医学工程学报,2016,31(4):561-567。doi: 10.1016 / s0007 - 1536(87) 80090 - 6。[Crossref], [Google Scholar]。 2014 3种生物防治剂及天然定殖真菌对鳞状葡萄孢、菌核菌和头孢菌菌核存活的影响分析[硕士论文]。圭尔夫(ON):圭尔夫大学。[Google Scholar]刘建军,刘建军,刘建军,等。麦麸上生长的曲霉霉细胞壁降解酶。[j] .中国生物医学工程学报,2011,31(4):1104 - 1104。[谷歌学术研究]李文杰。2020。头核菌核对大蒜鳞茎细胞活性影响的研究。科学P系列a。LXIII(1): 186 - 191。[谷歌学术]CABI(2021)。洋葱和大蒜的白腐病。出租车国际;[获取于2022年]英国沃林福德。https://www.cabi.org/isc/datasheet/49145 toDistributionMaps。[Google Scholar] Castillo N. 2000 Aislamiento identificación y selección de potenticiales hongos antagonistas al hongo Sclerotium cepivorum Berk causante de la pudrición blanca de la cerbolla de bulbo (AIIium cepa L.)[硕士论文]。突尼斯(Col):哥伦比亚大学Pedagógica和Tecnológica。西班牙语[谷歌学术]钱玉成,黄春华2020。叶面喷施及施解淀粉芽孢杆菌和曲霉木霉生长培养基防治番茄细菌性斑疹病的研究。null。156(4): 995 - 1003。doi: 10.1007 / s10658 - 020 - 01947 - 5。[Crossref]、[Google Scholar]、[c]、[c]。水疱丛枝菌根(VAM)连续有效土壤日晒对洋葱白腐病(Sclerotium cepivorum Berk.)和产量的长期影响。作物学报,11(1):109-117。[Google Scholar] Clarkson JP, Mead A, Payne T, whpps JM 2004。环境因子及头孢菌核菌分离物对木霉菌核降解及白腐病生物防治的影响。null。53(3): 353 - 362。doi: 10.1111 / j.0032-0862.2004.01013.x。[Crossref], [Google Scholar] Clarkson JP, Payne T, Mead A, Whipps JM 2002。英国土壤菌核降解防治白腐病菌核菌生物防治剂的选择。null。51(6): 735 - 745。doi: 10.1046 / j.1365-3059.2002.00787.x。[Crossref], [Google Scholar] Coley-Smith JR . 1990。葱白腐病:土传病害的微观问题。null。39:214 - 222。2 10.1111 / j.1365-3059.1990.tb02495。[Crossref], [Google Scholar] Coley-Smith JR ., King JE 1969。不同种类葱属植物对烷基硫化物的产生及其对鹿皮菌核萌发的影响。中国生物医学工程学报,32(2):389 - 391。doi: 10.1111 / j.1744-7348.1969.tb02879.x。[Crossref] [Web of Science®],[Google Scholar] Cotes AM, Fargetton X, Köhl J, Díaz García A, Gómez Álvarez MI, Grijalba Bernal EP,等。2018 Control biológico de fitopatógenos,昆虫y ácaros: applications aciones y perspectivas。2 .柯茨,编辑。波哥大(Col):Corporación columbiana de Investigación Agropecuaria。西班牙语。[Crossref], [Google Scholar]王晓明,李晓明。康宁木霉与预发芽联合处理后的豆苗水解酶活性与对splendens的防护效果的相关性。null。102(5): 497 - 506。doi: 10.1007 / bf01877144。[Crossref], [Google Scholar] Cotes Prado AM, Beltrán Acosta CR, Velandia M, Carlos A, Villamizar Rivero LF, Gómez IM, Grijalba Bernal EP,等。2011。金刚木霉Th003替代物biológica对茄枯丝核菌的防治作用。Cotes Prado AM,编辑。波哥大(Col):Corporación哥伦比亚Investigación科波尼卡农业和加纳科尔多瓦大学。西班牙语。[谷歌学术]考文垂E, Noble R, Mead A, Whipps JM 2002。洋葱垃圾堆肥防治葱白腐病。土壤学报,34(7):1037-1045。doi: 10.1016 / s0038 - 0717(02) 00037 - 8。[Crossref] [Web of Science®],[Google Scholar], Coventry E, Noble R, Mead A, Whipps JM . 2005。蔬菜废弃物对不同土壤中葱白腐病的抑制作用。null。111(2): 101 - 112。doi: 10.1007 / s10658 - 004 - 1420 - 0。[Crossref], [Google Scholar]王晓明,王晓明。2008。土壤温度和湿度对洋葱菌核萌发和洋葱头菌核侵染的影响。Phytopathol。70(1):74 - 78。[Crossref] [Web of Science®],[Google Scholar]。2008. 《白腐》编辑:Schwartz HF, Krishna Mohan S。葱蒜病虫纲目。圣保罗(明尼苏达):美国植物病理学学会;p。22日至26日进行的。[Google Scholar]张建军,张建军,张建军,等。2010。白腐病防治研究显示出更好的前景。洋葱世界。9:22 - 25。[Google Scholar] Díaz-García A, García-Riaño J, Zapata-Narvaez J. 2015。一株解淀粉芽孢杆菌液体发酵产孢条件的改进。生物工程学报,2011,31(6):391 - 391。doi: 10.4236 / abb.2015.64029。 [Crossref], [Google Scholar] Elshahawy IE, Morsy AA, Abd-El-Kareem F, Saied NM。2019. 反复施用菌核萌发剂防治洋葱和大蒜白腐病。太阳物理学报。5(1):e01168。doi: 10.1016 / j.heliyon.2019.e01168。[Crossref] [PubMed] [Web of Science®],[Google Scholar],刘建军,刘建军,刘建军。2017。小麦麸皮粉配木霉防治洋葱白腐病的研究。植物酚类植物学报,30(3):391 - 391。doi: 10.1080 / 03235408.2016.1276423。[Taylor & Francis Online], [Google Scholar] Elshahawy IE, Saied NM 2021。土壤生物日晒法防治洋葱、大蒜白腐病及降低洋葱白腐病菌核活力。null。160(3): 519 - 540。doi: 10.1007 / s10658 - 021 - 02260 - 5。[Crossref], [Google学术研究],刘建军,刘建军,刘建军。2018. 选择菌株及其组合防治洋葱大蒜白腐病的田间应用。[J] .中国生物医学工程学报,2016,31(3):493 - 493。doi: 10.1007 / s42161 - 018 - 0113 - z。[Crossref] [Web of Science®],[Google Scholar] EPA。2009. 农药产品标签,DADS™生物刺激素。美国环境保护局,2749-2526。华盛顿(特区);1 - 3页。可在:https://www3.epa.gov/pesticides/chem_search/ppls/002749-00526-20091125.pdf。[谷歌学术]美国环保署。2012. 农药产品标签,Quilt Xcel™美国环境保护署,1001324。华盛顿(特区);1-33页。可在:https://www3.epa.gov/pesticides/chem_search/ppls/000100-01324-20120810.pdf。[谷歌学术]美国环保署。2013. 农药产品标签,Medallion®杀菌剂美国环境保护署100-769。华盛顿(特区);1-33页。可在:https://www3.epa.gov/pesticides/chem_search/ppls/000100-00769-20130506.pdf。[谷歌学术]美国环保署。2016. 农药产品标签,FD戊康唑3.6F。美国环境保护署91223 -3。华盛顿(特区);P. 1-35可在:https://www3.epa.gov/pesticides/chem_search/ppls/091232-00003-20161215.pdf。[谷歌学术]美国环保署。2018. 农药产品标签,东帝汶黄金。美国环境保护局。86182-1。华盛顿(特区)。P. 1-33可在:https://www3.epa.gov/pesticides/chem_search/ppls/086182-00001-20180531.pdf。[Google Scholar] Franco-Cirigliano MN, Rezende RC, Gravina-Oliveira MP, Pereira PHF, do Nascimento RP, Bon EPS等。2013。使命链霉菌PESB-25以甘蔗渣和玉米浸泡液为唯一有机底物生产一种嗜热酸性内切葡聚糖酶。生物医学杂志,2013:584207。doi: 10.1155 / 2013/584207。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Fuga CAG, Lopes EA, Vieira BS, da Cunha WV。2016. 木霉和芽孢杆菌分离株抑制头核菌核的效率和相容性。Cientifica。44(4): 526 - 531。doi: 10.15361 / 1984 - 5529.2016 - v44n4p526 - 531。[Crossref], [Google Scholar] Galal A-MM。2006. 本地链霉菌菌株诱导黄瓜植株对黄瓜花叶黄瓜病毒的系统性获得性抗性。植物病理学杂志(5):343-349。[Crossref], [Google学术研究],刘建军,杨建军,等。2012。广义线性混合模型。见:Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M,等,编辑。广义线性混合模型在农业与自然资源科学中的分析。美国:美国农学学会。generalized-linear-mixed-models.c5 doi: 10.2134/2012.;p . 109 - 197。[Crossref], [Google Scholar]刘建军,刘建军,刘建军。2008。结合生物防治剂,减少生物防治的可变性。Phytopathol。91(7):621 - 627。doi: 10.1094 / PHYTO.2001.91.7.621。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Guetsky, D . Shtienberg D . Elad Y . Fischer E . Dinoor A. 2002。通过联合使用具有多种抑制疾病机制的生物防治剂来改善生物防治。Phytopathol。92(9):976 - 985。doi: 10.1094 / PHYTO.2002.92.9.976。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Haggag WM, Nofal MA。2006. 埃及部分番荔枝品种单药或多药生物防治技术的研究。生物防治学报,38(3):341-349。doi: 10.1016 / j.biocontrol.2006.02.010。[Crossref] [Web of Science®],[Google Scholar],张建平,张建平,等。2014。根渗出物介导地下的相互作用。土壤与生物化学。77:69-80。doi: 10.1016 / j.soilbio.2014.06.017。[交叉参考][Web of Science®],[Google Scholar]韩建平,韩秀生,韩基香,王忠泰,张国,等。2013。利用Burkholderia CAB08106-4生物防治大蒜白腐病。植物学报,19(1):21-24。doi: 10.5423 / RPD.2013.19.1.021。[Crossref], [Google Scholar] Harper GE。 2001年头孢菌核生物学研究[博士论文]。坎特伯雷(新西兰):林肯大学[Google Scholar]黄建伟,施宏东,黄宏成,钟文昌。2007. 营养物质对巴达努链霉菌PMS-702产真菌色素的影响及对鼠疫疫霉的防治效果植物病理学报,29(3):261-267。doi: 10.1080 / 07060660709507468。[Taylor & Francis Online] [Web of Science®],[Google Scholar] Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ,等。2016。南非与Protea spp.后代相关的抗真菌链霉菌。微生物学前缘,7:16 . 57。doi: 10.3389 / fmicb.2016.01657。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA 2020。绿木霉Gl006与velezenbacillus Bs006:控制醋栗枯萎病的相容互作。科学通报,10(1):357。doi: 10.1038 / s41598 - 020 - 63689 - y。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Jaimes Suárez YY, Moreno Velandia CA, Cotes Prado AM。2009. Inducción koningiiop木霉病与玉米尖孢镰刀菌的抗病性。Acta biol.Colomb。14(3): 10。西班牙语。[Google Scholar]李建军,李建军,李建军,等。适应气候变化的农业用木霉。世界微生物学杂志,33(8):155。doi: 10.1007 / s11274 - 017 - 2319 - 1。[Crossref] [PubMed] [Web of Science®],[Google Scholar]。管理土壤传播病原体的物理和培养方法。作物学报,19(8):725-731。doi: 10.1016 / s0261 - 2194 (00) 00096 - x。[Crossref] [Web Science®],[Google Scholar],李建平,李建平,李建平。2005。碳源对硬核寄生虫atroviride木霉和Coniothyrium minitans裂解酶生产的影响。植物酚类化合物学报,2014(5):344 - 344。doi: 10.1111 / j.1439-0434.2005.00969.x。[Crossref] [Web of Science®],[Google Scholar]金海,金海涛,闵永刚。2015. 杀菌剂对大蒜头菌核病白腐病的防治作用。农药科学,19(1):64-70。doi: 10.7585 / kjps.2015.19.1.64。[Crossref], [Google学术研究]王晓明,王晓明。2012。R(软件)。v3.5.1。包“glmm”。维也纳:R基金会统计计算。[2021年2月2日访问]。[Google Scholar]李彦宏,金爱思,许世杰,尹海涛,韩建辉,金建军等。2018。C-1:芽孢杆菌H30-3对植物病原真菌具有抗真菌活性。真菌学通报,30(1):94-94。[Google学术研究]李建军,刘建军,刘建军,等。丛枝菌根真菌和木霉防治洋葱白腐病的效果评价。植物病原微生物学杂志,4(1):159。[Crossref], [Google Scholar]李勇,刘建军,刘建军,刘建军。杀菌剂在混合物中的联合作用:两种协同计算方法的比较。植物保护学报,16(4):651-657。doi: 10.1111 / j.1365-2338.1986.tb00338.x。[Crossref], [Google Scholar],李建平,李建平。2001。大蒜中的一种植物抗毒素Allixin在体外抑制幽门螺杆菌的生长。[J] .胃肠病杂志。96:3454。doi: 10.1111 / j.1572-0241.2001.05351.x。[Crossref] [PubMed] [Web of Science®],[Google Scholar]马迪扎德纳拉吉,李建军,李建军,李建军。2015。拮抗真菌生物制剂对大蒜白腐病的生物防治。[J] .植物学报,2014,31(2):559 - 561。doi: 10.1515 / jppr - 2015 - 0017。[Crossref], [Google学术研究]李建平,李建平。提高土壤温度降低新西兰土壤中头孢菌核的菌核活力。土壤学报,33(2):137-143。doi: 10.1016 / s0038 - 0717 (00) 00119 - x。[Crossref] [Web of Science®],[Google Scholar] Mesa P, García C, Cotes AM。2017. En búsqueda de una alternativa de manejo del camandulleo de la papa spora underground。哥伦比亚科学展望Hortícolas。11日,378 - 386。doi: 10.17584 / rcch.2017v11i2.6150。西班牙语。[Crossref], [Google Scholar] Mesa Quijano EP。2016. 添加剂对微生物生物防治效果的研究orgánicos海底海绵状孢子虫及其地下海绵状孢子虫[硕士论文]。波哥大(Col):哥伦比亚国立大学波哥大分校<e:1>。西班牙语[Google Scholar] Mesterházy A, Tóth B, Varga M, Bartók T, Szabó-Hevér A, Farády L等。2011。杀菌剂的作用、喷嘴类型的应用及小麦品种对赤霉病和脱氧雪腐镰刀菌醇的抗性水平。毒素。3(11):1453 - 1483。doi: 10.3390 / toxins3111453。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Metcalf DA。1997. 头菌核菌的生物防治。(洋葱白根腐病)采用康宁木霉。(论文)。霍巴特(澳大利亚):塔斯马尼亚大学[Google Scholar] Minchev Z, Kostenko O, Soler R, Pozo MJ。2021. 微生物群落对番茄根叶病害的有效生物防治。植物科学,12:756 - 368。doi: 10.3389 / fpls.2021.756368。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Mohd-Yusoff J, Alias Z, Simarani K. 2016。从使命链霉菌中分离得到的胰蛋白酶抑制剂UMS1具有抑菌活性和α-淀粉酶活性。中国生物医学工程学报,2016,32(3):559 - 563。doi: 10.1134 / S0003683816030133。[Crossref] [Web of Science®],[Google Scholar] Moreno-Velandia CA, Izquierdo-García LF, Ongena M, Kloepper JW, Cotes AM。2019. 土壤灭菌、病原菌和拮抗剂浓度对蔓醋栗枯萎病芽孢杆菌Bs006生物防治的影响。草业学报,2014(1):39-55。doi: 10.1007 / s11104 - 018 - 3866 - 4。[Crossref] [Web of Science®],[Google Scholar]。2014. 解淀粉芽孢杆菌(Bs006)防治猕猴桃尖孢镰刀菌活性的生物因素研究。IOBC-WPRS通报。115:129-136。[Google Scholar] Moreno CA, Castillo F, González A, Bernal D, james Y, Chaparro M, González C, Rodriguez F, Restrepo S, Cotes AM,等。2009。番茄植株对克宁木霉反应的生物学和分子特性研究。植物生理学报,2013,31(2):444 - 444。doi: 10.1016 / j.pmpp.2009.10.001。[Crossref] [Web of Science®],[Google Scholar] . 2016。大蒜的生物防治效果研究。植物学报,19(1):15-17。[Crossref], [Google Scholar]刘建军,刘建军,刘建军,等。2017。根际微生物联合体作为防治鹰嘴豆枯萎病的新途径。植物学报,2014(1):425-439。doi: 10.1007 / s11104 - 016 - 3080 - 1。[Crossref] [Web Science®],[Google Scholar], A. 2000。中华微生物学杂志,identificación y selección细菌与生物防治技术研究进展fitopatógeno头孢菌核。, pudrición白桦尺叶小叶尺叶小叶尺叶小叶。[硕士论文]。突尼斯(Col):哥伦比亚大学Pedagógica和Tecnológica。西班牙语[谷歌学术]Paris A, Cotes AM。2002. 酵母和细菌对洋葱头菌核病的生物防治。生物学报,25(10):311-314。[Google Scholar]刘建军,刘建军,刘建军,Castañeda-Cabrera C ., Ramírez-Malagón R. 2009。体外对菌核菌的敏感性研究,微生物学杂志Comúnmente。墨西哥复兴fitopatología。27:11-17。西班牙语。[Google学术]李建军,李建军,李建军,等。大蒜(Allium sativum)对头菌核菌(Sclerotium cepivorum)感染产生具有抑菌特性的萜烯。Phytochem 115:152 - 160。doi: 10.1016 / j.phytochem.2015.02.003。[Crossref] [PubMed] [Web of Science®],[Google Scholar]钱明,Dung J. 2017。大蒜/洋葱有机硫化合物对白腐病菌核萌发的影响。俄勒冈州立大学,科瓦利斯,俄勒冈州97330. [Google Scholar]李建军,张建军,张建军。鹰嘴豆植物健康管理微生物群落评价。中国生物医学工程学报(英文版);[Google Scholar] verira - msamendez W, Obregón M, Morán-Diez, ME, Hermosa R, Monte E. 2020。热带气候条件下洋葱曲霉生防活性及诱导对头核菌核的系统防御。中国生物防治学报,41(1):481 - 481。doi: 10.1016 / j.biocontrol.2019.104145。[Crossref] [Web of Science®],[Google Scholar] rivera - manciandz W, Zúñiga-Vega C, Brenes-Madriz JA。2016. 防治biológico哥斯大黎加葡萄菌核病和曲霉病。revsta Tecnología en Marcha, 41-50。doi: 10.18845 / tm.v29i7.2704。西班牙语。[Crossref], [Google Scholar]刘建军,刘建军,刘建军。2010。头孢菌核病流行病学分析及防治。大蒜白腐病(Allium sativum L.)。Bioagro。22(3):185 - 192。[Google Scholar] Santos A, García M, Cotes AM, Villamizar L. 2012。生物杀虫剂的功效:formulación sobre la vida útil:一种对哥伦比亚克氏木霉Th003和曲霉Th034的生物杀虫方法。伊比利亚美洲展望Micología。29(3): 150 - 156。doi: 10.1016 / j.riam.2011.11.002。西班牙语。[Crossref], [Google Scholar] Shahid M, Pandey S . Srivastava M . Kumar V . Singh A . Trivedi S .等。2016。利用生物分子技术对木霉不同菌种的特性和鉴定。[J] .微生物学通报,2009(1):1 - 7。[Google学术]Shalaby ME, Ghoniem KE, El-Diehi MA。2013. 头孢菌核对洋葱白腐病的生物拮抗和杀真菌拮抗作用。微生物学通报,2013(4):1579-1589。doi: 10.1007 / s13213 - 013 - 0621 - 1。[交叉引用][Web of Science®],[Google Scholar]史宏东,刘云成,徐凤林,Mulabagal V, Dodda R,黄建伟。2003. 真菌色素:一种来自巴达链霉菌的物质,对茄枯丝核菌有抑制作用。农业食品化学,51(1):95-99。doi: 10.1021 / jf025879b。[Crossref] [PubMed] [Web of Science®],[Google Scholar]。头孢菌核菌和尖孢镰刀菌衣孢子在十字花科残留物改良土壤中的存活。植物酚类化合物学报,2014(6):349 - 349。doi: 10.1046 / j.1439-0434.2000.00519.x。[Crossref] [Web of Science®],[Google Scholar]。2015。植物防治学报,48(6):459-474。doi: 10.1080 / 03235408.2014.893638。[Taylor & Francis Online], [Google Scholar] Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ。2014. 哈茨木霉对菌核菌的分枝寄生研究:细胞壁降解酶基因的表达和拮抗作用的评价。生物技术学报,36(10):2095-2101。doi: 10.1007 / s10529 - 014 - 1583 - 5。[Crossref] [PubMed] [Web of Science®],[Google Scholar] Ulacio D, Zavaleta-Mejía E, Martínez-Garza A, Pedroza-Sandoval A, msamxico - texcoco C, Edo de msamxico M. 2006。头菌核菌的管理策略。在大蒜。[J] .华北农学报,2004,22(3):359 - 361。doi: 10.4454 / jpp.v88i3.870。[Crossref] [Web of Science®],[Google Scholar] Urbina-Salazar AR, Inca-Torres AR, Falcón-García G, Carbonero-Aguilar P, Rodríguez-Morgado B, del Campo, JA,等。2018。哈兹木霉在富含几丁质蘑菇副产品的配制培养基上生产几丁质酶。生物质化学工程学报,2010(1):2915-2923。doi: 10.1007 / s12649 - 018 - 0328 - 4。[Crossref], [Google Scholar] Uribe Gutierrez LA, Zapata Narvaez JA, Villamizar Rivero LF, Diaz Garcia A, Gomez Alvarez MI, Cotes Prado AM等。2013。基于粘红酵母Lv316的黑莓葡萄灰霉病生物农药原型的研制。IOBC-WPRS公牛。李建军,张建军,张建军,等。2008。从淤泥中分离头孢菌核的湿筛浮选技术。植物酚类化合物学报,36(6):444 - 444。[Google学术]Valadares-Inglis MC, Martins I, da Silva JP, de Mello SCM。2018. 在离体条件下对木霉的致病菌进行了筛选,结果表明:在离体条件下对木霉的致病菌有一定的控制作用。巴西利亚(内衣):“巴西农业研究公司”。葡萄牙语。[Google学术]刘建军,刘建军,刘建军。硫代葡萄糖苷的生物保护作用综述。食品科学与技术,42(10):1561-1572。doi: 10.1016 / j.lwt.2009.05.023。[Crossref] [Web Science®],[Google Scholar]刘建军,刘建军,刘建军,刘建军。二硫二烯丙酯、杀菌剂和生物防治综合防治葱白腐病。植物学报,2009(4):63-71。[关键词]谷歌学术研究[j] .北京:北京科技大学,2016。El culo de la celbolla。意甲guías-producción de hortalizas 34(25): 1-7。西班牙语。[Google学术研究]李建军,李建军,李建军,等。埃塞俄比亚大蒜白腐病的杀菌剂治理。作物学报,26(6):856-866。doi: 10.1016 / j.cropro.2006.08.017。[Crossref] [Web of Science®],[Google Scholar]补充信息本研究得到了Corporación columbiana de Investigación Agropecuaria, AGROSAVIA Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)的支持。
Microbial consortia as an option for biocontrol of Stromatinia cepivora
AbstractStromatinia cepivora, the causal agent of white rot, is responsible for 60-80% of economic losses in onion and garlic crops. This work aimed to select biological control agents (BCAs) to control white rot. Ten microorganisms were tested for hyperparasitic activity on S. cepivora sclerotia in garlic (Allium sativum). Bioassays consisted of pots filled with sterile soil and 50 sclerotia in a plastic Tulle bag. Four microorganisms were selected to compare their capability for degrade sclerotia on garlic. Our results showed that increasing degradation happened when Th034, Th035, Th003 and Bs006 were added to the pots containing garlic. Subsequently, three application techniques (seeds, seedlings at transplant, and seeds and transplant) were evaluated. Seven BCAs applied singly and in mixtures were evaluated in semi-field experiments for their ability to reduce white rot symptoms in onion plants in soil inoculated with 300 sclerotia per kilogram. The results indicated that efficacy was dependent on microrganism, mixture, and technique of application. The synergy factor showed that only two treatments have synergistic effects. In both cases, the mixture consisted of a strain of Bacillus and two species of Trichoderma (T. koningiopsis, T. atroviride) applied twice. In most cases, antagonistic interactions among BCAs were observed.Stromatinia cepivora, l’agent causal de la pourriture blanche, est responsable de 60 à 80 % des pertes financières relatives à la culture de l’oignon et de l’ail. Ces travaux visent à sélectionner des agents de lutte biologique (ALB) pour combattre la pourriture blanche. Dix microorganismes ont été testés pour leur activité hyperparasitique envers les sclérotes de S. cepivora chez l’ail (Allium sativum). Des biotests consistaient à placer dans des pots du sol stérile et 50 sclérotes contenus dans des sachets en tulle de plastique. Quatre microorganismes ont été sélectionnés afin de comparer leur capacité à dégrader les sclérotes sur l’ail. Nos résultats ont montré que davantage de dégradation se produisait lorsque Th034, Th035, Th003 et Bs006 étaient ajoutés aux pots contenant l’ail. Subséquemment, trois techniques d’application ont été évaluées (semences, plantules lors de la transplantation et semences et transplantation). Sept ALB appliqués seuls ou combinés ont été évalués au cours d’expériences menées dans des conditions semi-naturelles en vue de déterminer leur capacité à réduire les symptômes de la pourriture blanche chez l’oignon dans un sol inoculé avec 300 sclérotes par kilogramme. Les résultats ont indiqué que l’efficacité dépendait du microorganisme, de la combinaison et de la technique d’application. Le facteur de synergie a démontré que seuls deux traitements ont des effets synergiques. Dans les deux cas, la combinaison consistait en une souche de bacilles et deux espèces de Trichoderma (T. koningiopsis, T. atroviride) appliquées à deux reprises. Dans la plupart des cas, des interactions antagonistes entre les ALB ont été observées.KEYWORDS: antagonismBacillusbiocontrolStromatinia cepivoraTrichodermawhite rotKEYWORDS: MOTS CLÉSAntagonismebacilleslutte biologiquepourriture blancheStromatinia cepivoraTrichodermaDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was carried out with the financial support of the Colombian Corporation for Agricultural Research – AGROSAVIA. The authors thank to the Germplasm Bank of Microorganisms for supplying the biocontrol strains.Conflict of interestThe authors declare that there was no economic or financial interest that could be interpreted as a potential conflict of interest.Availability of data and materialThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.References Abbott WS 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol. 18(2):265–267. doi:10.1093/jee/18.2.265a. [Crossref], [Google Scholar] Abd-Elbaky A, El-Abeid S, Osman N. 2018. Effect of integration between vascular arbuscular mycorrhizal fungi and potassium silicate supplementation on controlling onion white rot. Egypt J Phytopathol. 46(1): 125–142. doi:10.21608/ejp.2018.87774. [Crossref], [Google Scholar] Backhouse D, Stewart, A. 1987. Anatomy and histochemistry of resting and germinating sclerotia of Sclerotium cepivorum. T Brit Mycol Soc. 89(4): 561–567. doi:10.1016/S0007-1536(87)80090-6. [Crossref], [Google Scholar] Barbison, LC. 2014 Analysis of three biological control agents and naturally-occurring fungal colonizers on the survival of sclerotia of Botrytis squamosa, Sclerotinia sclerotiorum and Sclerotium cepivorum [ master’s thesis]. Guelph (ON):University of Guelph. [Google Scholar] Bech L., Busk PK Lange L. 2015. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fung Genomic Biol. 4: 116. [Google Scholar] Bonciu E. 2020. Study regarding the cellular activity in garlic (A. sativum) bulbs affecting by Sclerotium cepivorum. Sci P Series A. Agron. LXIII(1): 186–191. [Google Scholar] CABI (2021). Stromatinia cepivora (white rot of onion and garlic). CAB International; [accessed 2022] Wallingford, UK. https://www.cabi.org/isc/datasheet/49145#toDistributionMaps. [Google Scholar] Castillo N. 2000 Aislamiento, identificación y selección de potenciales hongos antagonistas al hongo Sclerotium cepivorum Berk causante de la pudrición blanca de la cebolla de bulbo (AIIium cepa L.) [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Chien Y-C, Huang C-H 2020. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. null. 156(4): 995–1003. doi:10.1007/s10658-020-01947-5. [Crossref], [Google Scholar] Cimen I, Firing V, Sagir A. 2010. Determination of long-term effects of consecutive effective soil solarization with vesicular arbuscular mycorrhizal (VAM) on white rot disease (Sclerotium cepivorum Berk.) and yield of onion. Res Crop. 11(1): 109–117. [Google Scholar] Clarkson JP, Mead A, Payne T, Whipps JM 2004. Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. null. 53(3): 353–362. doi:10.1111/j.0032-0862.2004.01013.x. [Crossref], [Google Scholar] Clarkson JP, Payne T, Mead A, Whipps JM 2002. Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. null. 51(6): 735–745. doi:10.1046/j.1365-3059.2002.00787.x. [Crossref], [Google Scholar] Coley-Smith JR 1990. White rot disease of Allium: problems of soil-borne diseases in microcosm. null. 39:214–222. 2 10.1111/j.1365-3059.1990.tb02495.x [Crossref], [Google Scholar] Coley-Smith JR, King JE 1969. The production by species of Allium of alkyl sulphides and their effect on germination of sclerotia of Sclerotium cepivorum Berk. Ann Appl Biol. 64(2):289–301. doi:10.1111/j.1744-7348.1969.tb02879.x. [Crossref] [Web of Science ®], [Google Scholar] Cotes AM, Fargetton X, Köhl J, Díaz García A, Gómez Álvarez MI, Grijalba Bernal EP, et al. 2018 Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. 2 Cotes AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria. Spanish. [Crossref], [Google Scholar] Cotes AM, Lepoivre P, Semal J 1996. Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. null. 102(5):497–506. doi:10.1007/bf01877144. [Crossref], [Google Scholar] Cotes Prado AM, Beltrán Acosta CR, Velandia M, Carlos A, Villamizar Rivero LF, Gómez IM, Grijalba Bernal EP, et al. 2011. Trichoderma koningiopsis Th003 alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa. Cotes Prado AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria – Corpoica and Universidad de Cordoba, GANACOR. Spanish. [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2002. Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biol Biochem. 34(7):1037–1045. doi:10.1016/S0038-0717(02)00037-8. [Crossref] [Web of Science ®], [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2005. Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. null. 111(2):101–112. doi:10.1007/s10658-004-1420-0. [Crossref], [Google Scholar] Crowe F, Hall D. 1980. Soil temperature and moisture effects on sclerotium germination and infection of onion seedlings by Sclerotium cepivorum. Phytopathol. 70(1):74–78. [Crossref] [Web of Science ®], [Google Scholar] Crowe FJ. 2008. White Rot. In: Schwartz HF, Krishna Mohan S, editors. Compendium of Onion and Garlic Diseases and Pests. St. Paul (MN): The American Phytopathological Society; p. 22–26. [Google Scholar] Crowe FJ, Darnell T, Thornton M, Davis M, McGrath D, Koepsell P, et al. 1993. White rot control studies show promise of better future. Onion World. 9: 22–25. [Google Scholar] Díaz-García A, García-Riaño J, Zapata-Narvaez J. 2015. Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Adv Biosci Biotechnol. 6: 302–310. doi:10.4236/abb.2015.64029. [Crossref], [Google Scholar] Elshahawy IE, Morsy AA, Abd-El-Kareem F, Saied NM. 2019. Reduction of Stromatinia cepivora inocula and control of white rot disease in onion and garlic crops by repeated soil applications with sclerotial germination stimulants. Heliyon. 5(1): e01168. doi:10.1016/j.heliyon.2019.e01168. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Elshahawy IE, Saied N, Abd-El-Kareem F, Morsy A. 2017. Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder. Arch Phytopathol Plant Prot. 50(3–4): 150–166. doi:10.1080/03235408.2016.1276423. [Taylor & Francis Online], [Google Scholar] Elshahawy IE, Saied NM 2021. Reduced sclerotial viability of Stromatinia cepivora and control of white rot disease of onion and garlic by means of soil bio-solarization. null. 160(3): 519–540. doi:10.1007/s10658-021-02260-5. [Crossref], [Google Scholar] Elshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA. 2018. Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. J Plant Pathol. 100(3): 493–503. doi:10.1007/s42161-018-0113-z. [Crossref] [Web of Science ®], [Google Scholar] EPA. 2009. Pesticide Product Label, DADS™ BIOSTIMULANT. US Environmental Protection Agency. 2749–2526. Washington (DC); p. 1–3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/002749-00526-20091125.pdf. [Google Scholar] EPA. 2012. Pesticide Product Label, Quilt Xcel™ US Environmental Protection Agency. 100 1324. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-01324-20120810.pdf. [Google Scholar] EPA. 2013. Pesticide Product Label, Medallion® Fungicide. US Environmental Protection Agency 100-769. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-00769-20130506.pdf. [Google Scholar] EPA. 2016. Pesticide Product Label, FD Tebuconazole 3.6F. US Environmental Protection Agency 91232-3. Washington (DC); p. 1–35 3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/091232-00003-20161215.pdf. [Google Scholar] EPA. 2018. Pesticide Product Label, TIMOREX GOLD. US Environmental Protection Agency. 86182-1. Washington (DC). p. 1–33 2. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/086182-00001-20180531.pdf. [Google Scholar] Franco-Cirigliano MN, Rezende RC, Gravina-Oliveira MP, Pereira PHF, do Nascimento RP, Bon EPS, et al. 2013. Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Res Int. 2013: 584207. doi:10.1155/2013/584207. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Fuga CAG, Lopes EA, Vieira BS, da Cunha WV. 2016. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. Científica. 44(4): 526–531. doi:10.15361/1984-5529.2016v44n4p526-531. [Crossref], [Google Scholar] Galal A-MM. 2006. Induction of systemic acquired resistance in cucumber plant against Cucumber Mosaic Cucumovirus by local Streptomyces strains. Plant Pathol J. 5: 343–349. [Crossref], [Google Scholar] Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al. 2012. Generalized Linear Mixed Models. In: Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al., editors. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. US: American Society of Agronomy. doi:10.2134/2012.generalized-linear-mixed-models.c5; p. 109–197. [Crossref], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Dinoor A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathol. 91(7):621–627. doi:10.1094/PHYTO.2001.91.7.621. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathol. 92(9):976–985. doi:10.1094/PHYTO.2002.92.9.976. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Haggag WM, Nofal MA. 2006. Improving the biological control of Botryodiplodia disease on some Annona cultivars using single or multi-bioagents in Egypt. Biol Control. 38(3):341–349. doi:10.1016/j.biocontrol.2006.02.010. [Crossref] [Web of Science ®], [Google Scholar] Haichar FZ, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biol Biochem. 77:69–80. doi:10.1016/j.soilbio.2014.06.017. [Crossref] [Web of Science ®], [Google Scholar] Han KS, Soo Sang H, Ki Heung H, Jong Tae K, Buyng Ryun K, Chang Kook C, et al. 2013. Biological control of white rot in garlic using Burkholderia pyrrocinia CAB08106-4. Res in Plant Dis. 19(1):21–24. doi:10.5423/RPD.2013.19.1.021. [Crossref], [Google Scholar] Harper GE. 2001 Aspects of the biology of the sclerotia of Sclerotium cepivorum [ dissertation]. Canterbury (NZL): Lincoln University [Google Scholar] Huang J-W, Shih H-D, Huang H-C, Chung W-C. 2007. Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Can J Plant Pathol. 29(3):261–267. doi:10.1080/07060660709507468. [Taylor & Francis Online] [Web of Science ®], [Google Scholar] Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ, et al. 2016. Antifungal Streptomyces spp. associated with the infructescences of Protea spp. in South Africa. Front Microbiol. 7:1657. doi:10.3389/fmicb.2016.01657. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA 2020. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep. 10(1):6857. doi:10.1038/s41598-020-63689-y. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Jaimes Suárez YY, Moreno Velandia CA, Cotes Prado AM. 2009. Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta biol.Colomb. 14(3):10. Spanish. [Google Scholar] Kashyap PL, Rai P, Srivastava AK, Kumar S 2017. Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol. 33(8):155. doi:10.1007/s11274-017-2319-1. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Katan J. 2000. Physical and cultural methods for the management of soil-borne pathogens. Crop Prot. 19(8):725–731. doi:10.1016/S0261-2194(00)00096-X. [Crossref] [Web of Science ®], [Google Scholar] Kaur J, Munshi GD, Singh RS, Koch E. 2005. Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. J Phytopathol. 153(5):274–279. doi:10.1111/j.1439-0434.2005.00969.x. [Crossref] [Web of Science ®], [Google Scholar] Kim H, Kim HT, Min YG. 2015. Control activities of fungicides against garlic white rot caused by Sclerotium cepivorum. Korean J Pesticide Sci. 19(1):64–70. doi:10.7585/kjps.2015.19.1.64. [Crossref], [Google Scholar] Knudson C, Geyer CJ, Benson S. 2012. R [software]. v3.5.1. Package ‘glmm’. Vienna: R Foundation for Statistical Computing. [accessed 2021 Feb 2]. [Google Scholar] Lee YH, Kim ES, Heo SJ, Youn HR, Han JH, Kim KS, et al. 2018. C-1 : Bacillus siamensis H30-3 has antifungal activities against phytopathogenic fungi. Mycological Society News, 30(1):94–94. [Google Scholar] Leta A, Selvaraj T, Ambo P. 2013. Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). J Plant Pathol Microbiol. 4(1):159. doi:10.4172/2157-7471.1000159 [Crossref], [Google Scholar] Levy Y, Benderly M, Cohen Y, Gisi U, Bassand D. 1986. The joint action of fungicides in mixtures: comparison of two methods for synergy calculation. EPPO Bull. 16(4): 651–657. doi:10.1111/j.1365-2338.1986.tb00338.x. [Crossref], [Google Scholar] Mahady GB, Matsuura H, Pendland SL. 2001. Allixin, a phytoalexin from garlic, inhibits the growth of Helicobacter pylori in vitro. Am J Gastroenterol. 96:3454. doi:10.1111/j.1572-0241.2001.05351.x. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mahdizadehnaraghi R, Heydari A, Zamanizadeh HR, Rezaee S, Nikan J. 2015. Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. J Plant Prot Res. 55(2):136–141. doi:10.1515/jppr-2015-0017. [Crossref], [Google Scholar] McLean KL, Swaminathan J, Stewart A 2001. Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soils. Soil Biol Biochem. 33(2):137–143. doi:10.1016/S0038-0717(00)00119-X. [Crossref] [Web of Science ®], [Google Scholar] Mesa P, García C, Cotes AM. 2017. En búsqueda de una alternativa de manejo del camanduleo de la papa ocasionada por Spongospora subterranea. Revista Colombiana de Ciencias Hortícolas. 11, 378–386. doi:10.17584/rcch.2017v11i2.6150. Spanish. [Crossref], [Google Scholar] Mesa Quijano EP. 2016. Efecto de microorganismos biocontroladores y aditivos orgánicos sobre el camanduleo de la papa ocasionada por Spongospora subterranea f. sp. subterranea. [ master’s thesis]. Bogota (Col): Universidad Nacional de Colombia-Sede Bogotá. Spanish [Google Scholar] Mesterházy A, Tóth B, Varga M, Bartók T, Szabó-Hevér A, Farády L, et al. 2011. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins. 3(11):1453–1483. doi:10.3390/toxins3111453. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Metcalf DA. 1997. Biological control of Sclerotium cepivorum Berk.(onion white root rot) using Trichoderma koningii Oudem. [ dissertation]. Hobart (AU): University of Tasmania [Google Scholar] Minchev Z, Kostenko O, Soler R, Pozo MJ. 2021. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front Plant Sci. 12:756368. doi: 10.3389/fpls.2021.756368. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mohd-Yusoff J, Alias Z, Simarani K. 2016. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl Biochem Microbiol. 52(3):256–262. doi:10.1134/S0003683816030133. [Crossref] [Web of Science ®], [Google Scholar] Moreno-Velandia CA, Izquierdo-García LF, Ongena M, Kloepper JW, Cotes AM. 2019. Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant Soil. 435(1): 39–55. doi:10.1007/s11104-018-3866-4. [Crossref] [Web of Science ®], [Google Scholar] Moreno C, Kloepper J, Ongena M, Cotes AM. 2014. Biotic factors involved in biological control activity of Bacillus amyloliquefaciens (Bs006) against Fusarium oxysporum in Cape gooseberry (Physalis peruviana). IOBC-WPRS Bull. 115:129–136. [Google Scholar] Moreno CA, Castillo F, González A, Bernal D, Jaimes Y, Chaparro M, González C, Rodriguez F, Restrepo S, Cotes AM, et al. 2009. Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol. 74(2):111–120. doi:10.1016/j.pmpp.2009.10.001. [Crossref] [Web of Science ®], [Google Scholar] Nawrocki A. 2016. Effectiveness of the biological control of garlic (Allium sativum L.). Acta Hortic Regiotec. 19(1):15–17. [Crossref], [Google Scholar] Palmieri D, Vitullo D, De Curtis F, Lima G. 2017. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant Soil. 412(1):425–439. doi:10.1007/s11104-016-3080-1. [Crossref] [Web of Science ®], [Google Scholar] Paris A. 2000. Aislamiento, identificación y selección de bacterias y levaduras biocontroladores del fitopatógeno Sclerotium cepivorum Berk., causante de la pudrición blanca en cebolla de bulbo Allium cepa Linneo. [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Paris A, Cotes AM. 2002. Biological control of Sclerotium cepivorum in onion with a yeast and bacteria. IOBC Bull. 25(10):311–314. [Google Scholar] Pérez-Moreno L, Villalpando-Mendiola JJ, Castañeda-Cabrera C, Ramírez-Malagón R. 2009. Sensibilidad in vitro de Sclerotium rolfsii Saccardo, a Los Fungicidas Comúnmente Usados Para su Combate. Revista mexicana de fitopatología. 27:11–17. Spanish. [Google Scholar] Pontin M, Bottini R, Burba JL, Piccoli P. 2015. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochem. 115:152–160. doi:10.1016/j.phytochem.2015.02.003. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Qian M, Dung J. 2017. Efficacy of organic sulfur compounds from garlic/onion on white rot Sclerotia germination. Oregon State University, Corvallis, OR. 97330. [Google Scholar] Rajasekhar L, Sain SK, Divya J. 2016. Evaluation of microbial consortium for plant health management of chick pea. J Appl Biol Pharm Tech. 7:115–121. [Google Scholar] Rivera-Méndez W, Obregón M, Morán-Diez, ME, Hermosa R, Monte E. 2020. Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control. 141:104145. doi:10.1016/j.biocontrol.2019.104145. [Crossref] [Web of Science ®], [Google Scholar] Rivera-Méndez W, Zúñiga-Vega C, Brenes-Madriz JA. 2016. Control biológico del hongo Sclerotium cepivorum utilizando Trichoderma asperellum en el cultivo del ajo en Costa Rica. Revista Tecnología en Marcha. 41–50. doi:10.18845/tm.v29i7.2704. Spanish. [Crossref], [Google Scholar] Rojas V, Ulacio D, Jiménez MA, Perdomo W, Pardo A. 2010. Epidemiological analysis and control of Sclerotium cepivorum Berk. and white rot disease in garlic (Allium sativum L.). Bioagro. 22(3):185–192. [Google Scholar] Santos A, García M, Cotes AM, Villamizar L. 2012. Efecto de la formulación sobre la vida útil de bioplaguicidas a base de dos aislamientos colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología. 29(3):150–156. doi:10.1016/j.riam.2011.11.002. Spanish. [Crossref], [Google Scholar] Shahid M, Pandey S, Srivastava M, Kumar V, Singh A, Trivedi S, et al. 2016. Characterization and identification of different strains of Trichoderma species using bio-molecular techniques. J Pure Appl Microbiol. 10(1):769–787. [Google Scholar] Shalaby ME, Ghoniem KE, El-Diehi MA. 2013. Biological and fungicidal antagonism of Sclerotium cepivorum for controlling onion white rot disease. Ann of Microbiol. 63(4):1579–1589. doi:10.1007/s13213-013-0621-1. [Crossref] [Web of Science ®], [Google Scholar] Shih H-D, Liu Y-C, Hsu F-L, Mulabagal V, Dodda R, Huang J-W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agri Food Chem. 51(1):95–99. doi:10.1021/jf025879b. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Smolinska U. 2000. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J Phytopathol. 148(6):343–349. doi:10.1046/j.1439-0434.2000.00519.x. [Crossref] [Web of Science ®], [Google Scholar] Thakkar A, Saraf M. 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Prot. 48(6):459–474. doi:10.1080/03235408.2014.893638. [Taylor & Francis Online], [Google Scholar] Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ. 2014. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotech Lett. 36(10):2095–2101. doi:10.1007/s10529-014-1583-5. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Ulacio D, Zavaleta-Mejía E, Martínez-Garza A, Pedroza-Sandoval A, México-Texcoco C, Edo de México M. 2006. Strategies for management of Sclerotium cepivorum Berk. in garlic. J Plant Pathol. 88(3):253–261. doi:10.4454/jpp.v88i3.870. [Crossref] [Web of Science ®], [Google Scholar] Urbina-Salazar AR, Inca-Torres AR, Falcón-García G, Carbonero-Aguilar P, Rodríguez-Morgado B, del Campo, JA, et al. 2018. Chitinase production by Trichoderma harzianum grown on a chitin-rich mushroom byproduct formulated medium. Waste Biomass Valori. 10 (1): 2915–2923. doi:10.1007/s12649-018-0328-4. [Crossref], [Google Scholar] Uribe Gutierrez LA, Zapata Narvaez JA, Villamizar Rivero LF, Diaz Garcia A, Gomez Alvarez MI, Cotes Prado AM, et al. 2013. Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC-WPRS Bull. ISSN: 1027-3115 [Google Scholar] Utkhede R, Rahe J. 1979. Wet-sieving floatation technique for isolation of sclerotia of Sclerotium cepivorum from muck soil. Phytopathol. 69(295): e297. [Google Scholar] Valadares-Inglis MC, Martins I, da Silva JP, de Mello SCM. 2018. Seleção in vitro de linhagens de Trichoderma para controle da podridão-branca do alho e da cebola’ Boletim de pesquisa e desenvolvimento. Brasília(BRA): Embrapa. Portuguese. [Google Scholar] Vig AP, Rampal G, Thind TS, Arora S. 2009. Bio-protective effects of glucosinolates – a review. LWT Food Sci Technol. 42(10):1561–1572. doi:10.1016/j.lwt.2009.05.023. [Crossref] [Web of Science ®], [Google Scholar] Villalta ON, Wite D, Porter IJ, McLean KL, Stewart A, Hunt J 2012. Integrated Control of Onion White Rot on Spring Onions Using Diallyl Disulphide, Fungicides and Biocontrols. Acta Hortic. 944: 63–71. 944 10.17660/ActaHortic.2012.944.8 [Crossref], [Google Scholar] Zamora E. 2016. El cultivo de la cebolla. Serie guías–producción de hortalizas 34(25): 1–7. Spanish. [Google Scholar] Zewid T, Fininsa C, Sakhuja PK 2007. Management of white rot (Sclerotium cepivorum) of garlic using fungicides in Ethiopia. Crop Prot. 26(6): 856–866. doi:10.1016/j.cropro.2006.08.017. [Crossref] [Web of Science ®], [Google Scholar]Additional informationFundingThe work was supported by the Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) .
期刊介绍:
Canadian Journal of Plant Pathology is an international journal which publishes the results of scientific research and other information relevant to the discipline of plant pathology as review papers, research articles, notes and disease reports. Papers may be submitted in English or French and are subject to peer review. Research articles and notes include original research that contributes to the science of plant pathology or to the practice of plant pathology, including the diagnosis, estimation, prevention, and control of plant diseases. Notes are generally shorter in length and include more concise research results. Disease reports are brief, previously unpublished accounts of diseases occurring on a new host or geographic region. Review papers include mini-reviews, descriptions of emerging technologies, and full reviews on a topic of interest to readers, including symposium papers. These papers will be highlighted in each issue of the journal and require prior discussion with the Editor-in-Chief prior to submission.