Nelson Daniel, Fisranda Ferdinand, Parikesit Arli Aditya
{"title":"利用印尼植物活性化合物靶向福氏奈格丽虫CYP51的研究","authors":"Nelson Daniel, Fisranda Ferdinand, Parikesit Arli Aditya","doi":"10.56499/jppres23.1693_11.5.841","DOIUrl":null,"url":null,"abstract":"Context: Given the elusive nature of Primary Amoebic Meningoencephalitis (PAM), caused by Naegleria fowleri, early detection is vital, yet challenging due to limited clinical indicators. This research leverages Indonesia's rich biodiversity to explore novel sources of traditional medicine. Aims: To evaluate the potential compounds from Indonesian plants that possess antiamoebic and antifungal properties for inhibiting the N. fowleri CYP51 protein, crucial for cell integrity. Methods: Initially, 92 compounds were screened, and six were shortlisted following ADMETox evaluation. Subsequent steps encompassed QSAR analysis, molecular docking, and molecular dynamics simulations. Results: The QSAR analysis verified the activity potential of these six compounds, progressing them to molecular docking analysis. Among these, curcumenol from Curcuma longa emerged as a promising contender, displaying the lowest binding affinity at -9.2 kcal/mol, indicative of superior binding compared to other ligands. Molecular dynamics simulations underscored the stability of all compounds, with root mean square fluctuation (RMSF) values within 1-3 Å. Conclusions: Consequently, employing a comprehensive approach spanning ADMETox, QSAR, molecular docking, and dynamics simulations, curcumenol emerged as the prime candidate for inhibiting the N. fowleri CYP51 protein, suggesting its potential as a PAM therapeutic agent.","PeriodicalId":43917,"journal":{"name":"Journal of Pharmacy & Pharmacognosy Research","volume":"74 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico targeting CYP51 of Naegleria fowleri using bioactive compounds from Indonesian plants\",\"authors\":\"Nelson Daniel, Fisranda Ferdinand, Parikesit Arli Aditya\",\"doi\":\"10.56499/jppres23.1693_11.5.841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: Given the elusive nature of Primary Amoebic Meningoencephalitis (PAM), caused by Naegleria fowleri, early detection is vital, yet challenging due to limited clinical indicators. This research leverages Indonesia's rich biodiversity to explore novel sources of traditional medicine. Aims: To evaluate the potential compounds from Indonesian plants that possess antiamoebic and antifungal properties for inhibiting the N. fowleri CYP51 protein, crucial for cell integrity. Methods: Initially, 92 compounds were screened, and six were shortlisted following ADMETox evaluation. Subsequent steps encompassed QSAR analysis, molecular docking, and molecular dynamics simulations. Results: The QSAR analysis verified the activity potential of these six compounds, progressing them to molecular docking analysis. Among these, curcumenol from Curcuma longa emerged as a promising contender, displaying the lowest binding affinity at -9.2 kcal/mol, indicative of superior binding compared to other ligands. Molecular dynamics simulations underscored the stability of all compounds, with root mean square fluctuation (RMSF) values within 1-3 Å. Conclusions: Consequently, employing a comprehensive approach spanning ADMETox, QSAR, molecular docking, and dynamics simulations, curcumenol emerged as the prime candidate for inhibiting the N. fowleri CYP51 protein, suggesting its potential as a PAM therapeutic agent.\",\"PeriodicalId\":43917,\"journal\":{\"name\":\"Journal of Pharmacy & Pharmacognosy Research\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacy & Pharmacognosy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56499/jppres23.1693_11.5.841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy & Pharmacognosy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56499/jppres23.1693_11.5.841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In silico targeting CYP51 of Naegleria fowleri using bioactive compounds from Indonesian plants
Context: Given the elusive nature of Primary Amoebic Meningoencephalitis (PAM), caused by Naegleria fowleri, early detection is vital, yet challenging due to limited clinical indicators. This research leverages Indonesia's rich biodiversity to explore novel sources of traditional medicine. Aims: To evaluate the potential compounds from Indonesian plants that possess antiamoebic and antifungal properties for inhibiting the N. fowleri CYP51 protein, crucial for cell integrity. Methods: Initially, 92 compounds were screened, and six were shortlisted following ADMETox evaluation. Subsequent steps encompassed QSAR analysis, molecular docking, and molecular dynamics simulations. Results: The QSAR analysis verified the activity potential of these six compounds, progressing them to molecular docking analysis. Among these, curcumenol from Curcuma longa emerged as a promising contender, displaying the lowest binding affinity at -9.2 kcal/mol, indicative of superior binding compared to other ligands. Molecular dynamics simulations underscored the stability of all compounds, with root mean square fluctuation (RMSF) values within 1-3 Å. Conclusions: Consequently, employing a comprehensive approach spanning ADMETox, QSAR, molecular docking, and dynamics simulations, curcumenol emerged as the prime candidate for inhibiting the N. fowleri CYP51 protein, suggesting its potential as a PAM therapeutic agent.
期刊介绍:
The Journal of Pharmacy & Pharmacognosy Research (JPPRes) is an international, specialized and peer-reviewed open access journal, under the auspices of AVAGAX – Diseño, Publicidad y Servicios Informáticos, which publishes studies in the pharmaceutical and herbal fields concerned with the physical, botanical, chemical, biological, toxicological properties and clinical applications of molecular entities, active pharmaceutical ingredients, devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture, evaluation and marketing. This journal publishes research papers, reviews, commentaries and letters to the editor as well as special issues and review of pre-and post-graduate thesis from pharmacists or professionals involved in Pharmaceutical Sciences or Pharmacognosy.