混合卷积神经网络和期望最大化算法用于高光谱图像的层析重建

Q3 Chemistry Journal of Spectral Imaging Pub Date : 2023-01-31 DOI:10.1255/jsi.2023.a1
Mads Ahlebæk, Mads Peters, Wei-Chih Huang, Mads Frandsen, René Eriksen, Bjarke Jørgensen
{"title":"混合卷积神经网络和期望最大化算法用于高光谱图像的层析重建","authors":"Mads Ahlebæk, Mads Peters, Wei-Chih Huang, Mads Frandsen, René Eriksen, Bjarke Jørgensen","doi":"10.1255/jsi.2023.a1","DOIUrl":null,"url":null,"abstract":"We present a simple, but novel, hybrid approach to hyperspectral data cube reconstruction from computed tomography imaging spectrometry (CTIS) images that sequentially combines neural networks and the iterative expectation maximisation (EM) algorithm. We train and test the ability of the method to reconstruct data cubes of 100 × 100 × 25 and 100 × 100 × 100 voxels, corresponding to 25 and 100 spectral channels, from simulated CTIS images generated by our CTIS simulator. The hybrid approach utilises the inherent strength of the Convolutional Neural Network (CNN) with regards to noise and its ability to yield consistent reconstructions and make use of the EM algorithm’s ability to generalise to spectral images of any object without training. The hybrid approach achieves better performance than both the CNNs and EM alone for seen (included in CNN training) and unseen (excluded from CNN training) cubes for both the 25- and 100-channel cases. For the 25 spectral channels, the improvements from CNN to the hybrid model (CNN + EM) in terms of the mean-squared errors are between 14 % and 26 %. For 100 spectral channels, the improvements between 19 % and 40 % are attained with the largest improvement of 40 % for the unseen data, to which the CNNs are not exposed during the training.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images\",\"authors\":\"Mads Ahlebæk, Mads Peters, Wei-Chih Huang, Mads Frandsen, René Eriksen, Bjarke Jørgensen\",\"doi\":\"10.1255/jsi.2023.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple, but novel, hybrid approach to hyperspectral data cube reconstruction from computed tomography imaging spectrometry (CTIS) images that sequentially combines neural networks and the iterative expectation maximisation (EM) algorithm. We train and test the ability of the method to reconstruct data cubes of 100 × 100 × 25 and 100 × 100 × 100 voxels, corresponding to 25 and 100 spectral channels, from simulated CTIS images generated by our CTIS simulator. The hybrid approach utilises the inherent strength of the Convolutional Neural Network (CNN) with regards to noise and its ability to yield consistent reconstructions and make use of the EM algorithm’s ability to generalise to spectral images of any object without training. The hybrid approach achieves better performance than both the CNNs and EM alone for seen (included in CNN training) and unseen (excluded from CNN training) cubes for both the 25- and 100-channel cases. For the 25 spectral channels, the improvements from CNN to the hybrid model (CNN + EM) in terms of the mean-squared errors are between 14 % and 26 %. For 100 spectral channels, the improvements between 19 % and 40 % are attained with the largest improvement of 40 % for the unseen data, to which the CNNs are not exposed during the training.\",\"PeriodicalId\":37385,\"journal\":{\"name\":\"Journal of Spectral Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/jsi.2023.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2023.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种简单但新颖的混合方法,用于从计算机断层扫描成像光谱(CTIS)图像中重建高光谱数据立方体,该方法依次结合了神经网络和迭代期望最大化(EM)算法。我们训练并测试了该方法从CTIS模拟器生成的模拟CTIS图像中重构对应于25个和100个光谱通道的100 × 100 × 25和100 × 100 × 100体素的数据立方体的能力。混合方法利用卷积神经网络(CNN)在噪声方面的固有强度及其产生一致重建的能力,并利用EM算法无需训练即可推广到任何物体的光谱图像的能力。在25通道和100通道的情况下,对于可见(包括在CNN训练中)和未见(不包括在CNN训练中)数据集,混合方法比单独使用CNN和EM获得了更好的性能。对于25个光谱通道,CNN与混合模型(CNN + EM)在均方误差方面的改进在14%到26%之间。对于100个光谱通道,改进幅度在19%到40%之间,其中对于未见数据的改进幅度最大,达到40%,cnn在训练过程中没有暴露于未见数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images
We present a simple, but novel, hybrid approach to hyperspectral data cube reconstruction from computed tomography imaging spectrometry (CTIS) images that sequentially combines neural networks and the iterative expectation maximisation (EM) algorithm. We train and test the ability of the method to reconstruct data cubes of 100 × 100 × 25 and 100 × 100 × 100 voxels, corresponding to 25 and 100 spectral channels, from simulated CTIS images generated by our CTIS simulator. The hybrid approach utilises the inherent strength of the Convolutional Neural Network (CNN) with regards to noise and its ability to yield consistent reconstructions and make use of the EM algorithm’s ability to generalise to spectral images of any object without training. The hybrid approach achieves better performance than both the CNNs and EM alone for seen (included in CNN training) and unseen (excluded from CNN training) cubes for both the 25- and 100-channel cases. For the 25 spectral channels, the improvements from CNN to the hybrid model (CNN + EM) in terms of the mean-squared errors are between 14 % and 26 %. For 100 spectral channels, the improvements between 19 % and 40 % are attained with the largest improvement of 40 % for the unseen data, to which the CNNs are not exposed during the training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
期刊最新文献
Estimation of pigment concentration in LDPE via in-line hyperspectral imaging and machine learning The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images Comparison of 2D and 3D semantic segmentation in urban areas using fused hyperspectral and lidar data Comparison of different illumination systems for moisture prediction in cereal bars using hyperspectral imaging technology Reflectance spectra and AVIRIS-NG airborne hyperspectral data analysis for mapping ultramafic rocks in igneous terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1