Aws Alazawi, None Abbas Fadhal Humadi, None Huda Farooq Jameel, None Huda Ali Hashim, None John Soraghan
{"title":"基于灰度形态重建和快速行军相结合的肺冠状病毒感染区域计算机断层图像分割","authors":"Aws Alazawi, None Abbas Fadhal Humadi, None Huda Farooq Jameel, None Huda Ali Hashim, None John Soraghan","doi":"10.51173/jt.v5i3.1060","DOIUrl":null,"url":null,"abstract":"Recently, X-ray computed tomography-imaging modality is considered as golden standard for diagnosis of coronavirus lungs infection. In worldwide, infectious patients increase rapidly that lead to weariness in health services staff, as well as instant treatment required to avoid patients’ health deterioration due to infection development. Image processing would be reinforcing health services by considering computer-based segmentation. However, a ground glass computed tomography image fashion of coronavirus lungs infection characterized by disappearance of edge region of interest and lack of object structure. In this study, these challenges addressed by introducing a new algorithm that combined both morphological reconstruction and fast marching method. The proposed algorithm applied on archived computed tomography dataset for coronavirus infected patients, results showed consistent determination of ground glass infection region compared to manual delineation of senior physician. The proposed algorithm restricted to empirical adjustment of FMM’s threshold that would be addressed in upcoming study.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computed Tomography Image Segmentation of Lung Corona Virus Infection Region Based on Combination of Grayscale Morphological Reconstruction and Fast Marching Method\",\"authors\":\"Aws Alazawi, None Abbas Fadhal Humadi, None Huda Farooq Jameel, None Huda Ali Hashim, None John Soraghan\",\"doi\":\"10.51173/jt.v5i3.1060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, X-ray computed tomography-imaging modality is considered as golden standard for diagnosis of coronavirus lungs infection. In worldwide, infectious patients increase rapidly that lead to weariness in health services staff, as well as instant treatment required to avoid patients’ health deterioration due to infection development. Image processing would be reinforcing health services by considering computer-based segmentation. However, a ground glass computed tomography image fashion of coronavirus lungs infection characterized by disappearance of edge region of interest and lack of object structure. In this study, these challenges addressed by introducing a new algorithm that combined both morphological reconstruction and fast marching method. The proposed algorithm applied on archived computed tomography dataset for coronavirus infected patients, results showed consistent determination of ground glass infection region compared to manual delineation of senior physician. The proposed algorithm restricted to empirical adjustment of FMM’s threshold that would be addressed in upcoming study.\",\"PeriodicalId\":39617,\"journal\":{\"name\":\"Journal of Biomolecular Techniques\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51173/jt.v5i3.1060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i3.1060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Computed Tomography Image Segmentation of Lung Corona Virus Infection Region Based on Combination of Grayscale Morphological Reconstruction and Fast Marching Method
Recently, X-ray computed tomography-imaging modality is considered as golden standard for diagnosis of coronavirus lungs infection. In worldwide, infectious patients increase rapidly that lead to weariness in health services staff, as well as instant treatment required to avoid patients’ health deterioration due to infection development. Image processing would be reinforcing health services by considering computer-based segmentation. However, a ground glass computed tomography image fashion of coronavirus lungs infection characterized by disappearance of edge region of interest and lack of object structure. In this study, these challenges addressed by introducing a new algorithm that combined both morphological reconstruction and fast marching method. The proposed algorithm applied on archived computed tomography dataset for coronavirus infected patients, results showed consistent determination of ground glass infection region compared to manual delineation of senior physician. The proposed algorithm restricted to empirical adjustment of FMM’s threshold that would be addressed in upcoming study.
期刊介绍:
The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.