空间支架法制备多孔钢及其力学性能

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Transactions Pub Date : 2023-07-01 DOI:10.2320/matertrans.mt-z2023002
Tomoyuki Fujii, Shu Saito, Yoshinobu Shimamura
{"title":"空间支架法制备多孔钢及其力学性能","authors":"Tomoyuki Fujii, Shu Saito, Yoshinobu Shimamura","doi":"10.2320/matertrans.mt-z2023002","DOIUrl":null,"url":null,"abstract":"Porous metals, which include small pores inside metals, are promising materials due to their material and structural characteristics. Although they generally exhibit low strength because the pores behave as defects, porous metals are expected to achieve high specific strength due to their ultra-lightweight characteristic. This paper deals with a feasibility study on the fabrication of porous steels for developing unique metals with a high specific strength. Porous steels were fabricated via powder metallurgy-based space holder technique. Alloy tool steel, SKD11, and sodium chloride, NaCl, were used as a scaffold metal and spacer material, respectively. Mixed powders of SKD11 and NaCl were sintered via the spark plasma sintering technique. Each sintered compact was re-heated in an argon atmosphere to remove NaCl and densify the scaffold in the compact. Then, each compact was quenched and tempered. As a result, open-cell porous steels with porosities of 60% and 70% were successfully fabricated. The heat treatment refined the microstructure of the scaffold without changing the pore shape, porosity, etc., improving their strength property, irrespective of their porosity. Furthermore, the specific proof strength of heat-treated porous steels was comparable to that of dense pure aluminum.","PeriodicalId":18402,"journal":{"name":"Materials Transactions","volume":"16 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Porous Steels via Space Holder Technique and Their Mechanical Properties\",\"authors\":\"Tomoyuki Fujii, Shu Saito, Yoshinobu Shimamura\",\"doi\":\"10.2320/matertrans.mt-z2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porous metals, which include small pores inside metals, are promising materials due to their material and structural characteristics. Although they generally exhibit low strength because the pores behave as defects, porous metals are expected to achieve high specific strength due to their ultra-lightweight characteristic. This paper deals with a feasibility study on the fabrication of porous steels for developing unique metals with a high specific strength. Porous steels were fabricated via powder metallurgy-based space holder technique. Alloy tool steel, SKD11, and sodium chloride, NaCl, were used as a scaffold metal and spacer material, respectively. Mixed powders of SKD11 and NaCl were sintered via the spark plasma sintering technique. Each sintered compact was re-heated in an argon atmosphere to remove NaCl and densify the scaffold in the compact. Then, each compact was quenched and tempered. As a result, open-cell porous steels with porosities of 60% and 70% were successfully fabricated. The heat treatment refined the microstructure of the scaffold without changing the pore shape, porosity, etc., improving their strength property, irrespective of their porosity. Furthermore, the specific proof strength of heat-treated porous steels was comparable to that of dense pure aluminum.\",\"PeriodicalId\":18402,\"journal\":{\"name\":\"Materials Transactions\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2320/matertrans.mt-z2023002\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/matertrans.mt-z2023002","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多孔金属,包括金属内部的小孔隙,由于其材料和结构特性,是很有前途的材料。虽然它们通常表现出低强度,因为孔隙表现为缺陷,多孔金属有望实现高比强度,由于其超轻的特性。本文探讨了制备多孔钢以开发具有独特高比强度金属的可行性研究。采用粉末冶金空间支架技术制备多孔钢。合金工具钢SKD11和氯化钠NaCl分别作为支架金属和间隔材料。采用火花等离子烧结技术烧结了SKD11和NaCl的混合粉末。在氩气气氛中重新加热每个烧结的致密体以去除NaCl并使致密体中的支架致密。然后,每一个紧凑是淬火和回火。成功制备了孔隙率为60%和70%的开孔多孔钢。热处理细化了支架的微观结构,而不改变支架的孔隙形状、孔隙率等,提高了支架的强度性能,而不影响支架的孔隙率。此外,热处理多孔钢的比抗强度与致密纯铝相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of Porous Steels via Space Holder Technique and Their Mechanical Properties
Porous metals, which include small pores inside metals, are promising materials due to their material and structural characteristics. Although they generally exhibit low strength because the pores behave as defects, porous metals are expected to achieve high specific strength due to their ultra-lightweight characteristic. This paper deals with a feasibility study on the fabrication of porous steels for developing unique metals with a high specific strength. Porous steels were fabricated via powder metallurgy-based space holder technique. Alloy tool steel, SKD11, and sodium chloride, NaCl, were used as a scaffold metal and spacer material, respectively. Mixed powders of SKD11 and NaCl were sintered via the spark plasma sintering technique. Each sintered compact was re-heated in an argon atmosphere to remove NaCl and densify the scaffold in the compact. Then, each compact was quenched and tempered. As a result, open-cell porous steels with porosities of 60% and 70% were successfully fabricated. The heat treatment refined the microstructure of the scaffold without changing the pore shape, porosity, etc., improving their strength property, irrespective of their porosity. Furthermore, the specific proof strength of heat-treated porous steels was comparable to that of dense pure aluminum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Transactions
Materials Transactions 工程技术-材料科学:综合
CiteScore
2.00
自引率
25.00%
发文量
205
审稿时长
2.7 months
期刊介绍: Information not localized
期刊最新文献
Fabrication and Electrical Properties of PSZT Piezoelectric Ceramic Ring for Ultrasonic Welding Application Measurement of True Stress–True Strain Curve up to Large Strain Extent at Elevated Temperatures in Ti–6Al–4V Alloy with Image Analysis Tensile Test Method Reduction of Surface Crack by Modified Molten Metal Pouring Method on Al–Mg Alloy Strips Produced by Twin-Roll Casting Phase Equilibria in Aluminium–Ruthenium–Silicon System near 1200 Kelvin Volatile Separation and Recovery of Iridium from Oxygen Evolution Electrodes Using Calcium Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1